论文部分内容阅读
肿瘤的诊断和靶向治疗是临床研究所面临的严峻挑战,单克隆抗体的发现和研究为肿瘤的诊断和靶向治疗提供了新的治疗手段。对于肿瘤治疗,单抗药物具有明确的靶向性,具有起效快、疗效好、副作用小等优点。能克服化疗药物不能有效区分正常细胞和肿瘤细胞、副作用大等缺点。但传统单克隆抗体因其分子量较大,肿瘤组织与血管的渗透与转运受到阻碍,无法作为胞内抗体,或与肿瘤细胞内靶标特异性结合而发挥抗肿瘤作用。此外,因单克隆抗体存在较强的免疫原性,使其在临床应用受到一定程度的限制,这也促进了小型化抗体的研究与发展。新型基因工程抗体,如嵌合抗体、人源化抗体和单域抗体,因其在稳定性、表达产量和抗体亲和力方面的天然缺陷而阻碍了临床的进一步应用。纳米抗体(Nanobodies,Nbs)来源于天然存在于骆驼科动物体内的重链抗体,是目前可以得到的具有完整抗原结合功能的最小抗体分子片段。作为一种小分子抗体片段,纳米抗体具有诸多优点,如较高的组织穿透性,较高的亲和力和水溶性,以及较高的特异性和亲和力。另外由于其小分子特性,使其保持较低的免疫原性,并且易于表达和纯化。因其特殊的物理学和生物学特性,纳米抗体被广泛的应用于肿瘤的诊断与治疗相关的研究。然而,纳米抗体在肿瘤诊断与治疗领域的的研究主要集中于肿瘤胞外靶标,如细胞因子,信号受体以及跨膜蛋白胞外结构域。然而,与肿瘤生长和细胞增殖相关的信号通路与信号传导机制主要发生在细胞内,针对肿瘤胞内抗原的抗体能够更有效的干扰与抑制肿瘤细胞生长与增殖相关的信号通路,从而达到抑制肿瘤生长的目的。此外,针对肿瘤胞内抗原的纳米抗体的开发,也能应用于肿瘤细胞内信号通路的研究从而有助于发现肿瘤发生与生长相关的信号通路和信号因子。因此,肿瘤胞内靶标的研究以及肿瘤胞内抗体的开发对于理解肿瘤的发展和诊断治疗有重要的意义。因肿瘤细胞的快速增殖会消耗大量的氧气,以及肿瘤对周围组织血管的浸润和破坏,从而导致肿瘤细胞中的普遍存在的缺氧状态。肿瘤组织中的乏氧可导致肿瘤细胞侵袭性增强,同时可诱导肿瘤对化放疗产生抗拒。肿瘤细胞的供血、供氧越好,代谢越旺盛,对放射线越敏感;反之,供血、供氧差的细胞对放射线的敏感性较差。肿瘤细胞缺氧会导致乏氧诱导因子-1(HIF-1)的表达水平显著高于正常组织,是肿瘤细胞中一系列基因改变的关键调控因子,起着中枢纽带作用。HIF-1是由氧浓度依赖性调节的HIF-1α亚基和组成性表达的HIF-1β亚基构成的异源二聚体。HIF-1α和β亚基都具有bHLH(basic helix-loop-helix)和PAS(Per-ARNT-Sim)结构,属于bHLH-PAS蛋白超家族。PAS蛋白结构域包括A、B两个亚结构域,是其形成异源二聚体并与DNA结合所必需的结构,是HIF-1发挥转录活性的关键结构域。PAS结构域的删除,甚至在二级结构域的数个氨基酸的突变会导致HIF-1转录活性的显著降低。HIF-1的转录活性主要取决于HIF-1α亚基的表达水平及其活性。在常氧条件下,细胞内HIF-1α极不稳定(半衰期<5 min),在脯氨酰羟化酶(prolyl hydroxylase,PHDs)的作用下,HIF-1αODD区的第402位、第564位的脯氨酸残基被羟基化后可与肿瘤抑制因子(von hippel-lindau,VHL)结合,在肿瘤抑制蛋白(pVHL)协同作用下,经泛素化蛋白酶途径而发生降解。在乏氧条件下,HIF-1α因不能被正常羟基化而不能与pVHL结合而发生降解,使细胞内HIF-1α水平显著增加。HIF-1α与β亚基的二聚化形成具有转录活性的HIF-1因子,从而促进靶向基因的转录激活。迄今为止已经发现的HIF-1相关的靶向基因超过100多种,这些基因的启动子或增强子内含有一个或多个具有5’-TACGTG-3’核苷酸序列的缺氧反应元件(hypoxia response elements,HREs),HIF-1通过与HREs的结合而启动下游靶向基因的转录作用。这些基因表达后参与,如红细胞生成,血管形成,核苷、氨基酸、糖的能量代谢,细胞存活、凋亡和活动以及药物抵抗等生物学效应,以维持组织、细胞在缺氧条件下内环境稳定,以适应缺氧。同时HIF-1及其诱导表达的基因还在生理性缺氧如干细胞微环境、胎盘发育、胚胎发育过程中组织细胞分化,以及多种病理情况如肿瘤的发展、转移中发挥着重要作用。低氧状态下,肿瘤细胞对化疗药物的耐药指数是常氧状态下的数倍,HIF-1的转录活性与多种耐药性相关的蛋白的表达相关,从而降低传统治疗手段的抗肿瘤作用。HIF-1的活性与血管生成相关,也造成肿瘤的发生及恶化。当细胞乏氧时,HIF-1能够促进血管内皮生长因子(VEGF)的转录并增加VEGF mRNA的稳定性,从而增加VEGF的表达。高浓度的VEGF可通过PI3K、MAPK、Ras、PLC等信号传导途径促进肿瘤血管内皮细胞生长,使肿瘤血管生成增加,促进肿瘤细胞的生长和增殖。HIF-1靶基因编码的蛋白中包含诸多与糖酵解及葡萄糖代谢相关的酶,肿瘤细胞处于乏氧条件下,HIF-1可以转录激活与糖酵解作用相关的代谢酶,增加肿瘤细胞摄取及利用葡萄糖代谢的能力,保证了肿瘤细胞生长的能量需求。肿瘤的侵袭和转移与多种酶类和细胞因子的表达及活性有关。HIF-1α可通过诱导多种蛋白酶及细胞因子,如基质金属蛋白酶(matrix metallo proteinases,MMP)、尿激酶受体(urokinase receptor),上皮型钙粘素(epithelial cadherin,E-cad)与β-链接素(β-catenin),使细胞与基质间之间、细胞与细胞之间的粘附性降低,导致细胞分离、侵袭及其转移。此外,乏氧条件下肿瘤的侵袭转移还与肿瘤细胞趋化因子受体CXCR4有关。HIF-1α可使CXCR4水平增加,不仅促进肿瘤细胞的转移,而且使其定位于特定器官。通过抑制HIF-1α而达到抑制肿瘤生长的作用机理大体上可以分为阻断相关信号转导通路和抑制HIF-1α的表达活性两类。本课题选择HIF-1α亚基的PAS B结构域蛋白为靶向抗原,旨在通过筛选针对PAS B结构域的特异性纳米抗体,并表达为胞内抗体,以期干扰HIF-1α与β亚基的结合,从而降低胞内HIF-1的水平,从而降低HIF-1相关靶基因的转录水平,以达到抑制HIF-1的转录活性的目的。本研究构建了纳米抗体免疫库,并设计与构建了特异性针对胞内抗原靶标(RNA,蛋白质等)的合成库,通过噬菌体展示技术富集筛选了抗原特异性纳米抗体,并对纳米抗体的物理学和生物学性质进行了评价。首先,表达和纯化了重组PAS B结构蛋白rPasB。基于PAS B蛋白的基因序列,并针对大肠杆菌表达载体的密码子偏好进行了密码子优化,然后进行基因序列的人工合成。之后将人工合成的基因克隆入pET21b载体构建了重组表达载体,并将其转化进入BL21(DE3)大肠杆菌表达细胞进行重组蛋白的表达。通过设立不同诱导时间,不同诱导温度及不同IPTG诱导浓度的实验组确定重组蛋白的最优表达条件。rPasB蛋白在BL21(DE3)胞内表达,通过超声细胞破碎将重组蛋白释放。镍离子金属亲和层析色谱用于从裂解液中纯化rPasB蛋白,尺寸排阻色谱用于去除rPasB中的游离咪唑并去除潜在的杂蛋白。rPasB的纯度与正确表达通过聚丙烯酰胺凝胶电泳和蛋白印迹实验进行确证。圆二色谱用于确认rPasB蛋白的二级结构及其热稳定性。纯化得到的rPasB蛋白用于免疫单峰驼。100μg rPasB蛋白通过静脉注射进入单峰驼体内以产生免疫反应,为引起足够的免疫反应免疫注射进行六周,免疫周期结束后收集血液并提取淋巴细胞。总RNA从淋巴细胞中提取并用作模板进行反转录PCR以获得cDNA,在接下来的PCR中以cDNA为模板,以特定引物进行PCR以获得包含重链抗体单域结构的基因集合。将所得到的基因集合通过酶切连接克隆至pMECS噬菌粒载体以构建纳米抗体表达载体,重组载体通过电转化进入TG1细胞构建了纳米抗体免疫库。本研究基于针对胞内抗原的纳米抗体的序列分析,基于纳米抗体BCII10的读码框结构设计了针对胞内抗原的人工合成库。抗体序列通过特定氨基酸的随机合成来制备纳米抗体基因集合。通过酶切连接进入pMECS噬菌粒载体以构建纳米抗体表达载体,重组载体通过电转化进入TG1细胞构建了纳米抗体合成库。免疫库及人工合成库的容量及多样性通过克隆PCR及序列测定进行了确证。通过随机挑取单克隆进行克隆PCR来确定抗体库中正确插入序列的比例。通过序列测定来分析合成库中特定氨基酸的分布并与设计时确认的比例进行比较来确认抗体库的质量。本研究证实了大容量免疫库与合成库的制备,免疫库及合成库的多样性进行了确认。基于纳米抗体免疫库及合成库的成功构建,以rPasB重组蛋白为抗原进行了特异性纳米抗体的富集筛选。通过四轮富集筛选,获得了针对rPasB蛋白的特异性纳米抗体。经过序列分析和酶联免疫吸附实验,确证了特异性纳米抗体的DNA序列和抗原结合能力。从TG1细胞中提取包含特异性纳米抗体DNA序列的pMECS噬菌粒载体,并转化进入大肠杆菌WK6细胞中用于纳米抗体的表达。特异性纳米抗体在WK6细胞周质空间表达,通过渗透压休克提取包含纳米抗体的提取液。镍离子金属亲和层析色谱用于从提取液中纯化抗体蛋白,尺寸排阻色谱用于去除抗体中的游离咪唑并去除潜在的杂蛋白,纳米抗体的纯度通过聚丙烯酰胺凝胶电泳和蛋白印迹实验进行确证。纯化的纳米抗体与rPasB蛋白的结合通过Western blot和ELISA进行了验证。本研究基于HeLa细胞构建了乏氧诱导模型,对特异性纳米抗体与HeLa细胞内天然HIF-1α蛋白的结合活性进行验证。去铁胺(Deferoxamine,DFO)及氯化钴(CoCl2)能够在常氧状态下通过不同机理干扰HIF-1α蛋白的氧依赖降解,从而升高细胞内HIF-1α水平。DFO是一种铁离子螯合剂,主要与三价铁离子络合形成复合物。由于其螯合的特性,无论是游离的或者铁蛋白结合的铁离子均能与之络合,形成铁胺复合物。因此,DFO通过与铁离子络合而影响与HIF-1α蛋白降解相关的脯氨酰羟化酶的活性,从而抑制HIF-1α蛋白在常氧条件下的降解。CoCl2通过多种机理来抑制HIF-1α蛋白在常氧条件下的降解。首先,CoCl2能够与HIF-1α蛋白降解相关的脯氨酰羟化酶结合,影响其对HIF-1α蛋白的羟基化而抑制常氧状态下的降解,升高胞内HIF-1α水平;其次,CoCl2还能够与已经羟基化的HIF-1α蛋白结合,从而干扰羟基化HIF-1α蛋白与pVHL的结合而抑制HIF-1α蛋白的降解。本研究对不同浓度的DFO及CoCl2的蛋白降解抑制作用进行研究,分别用0.1和0.2 mM的DFO及0.2和0.3 mM的CoCl2诱导HeLa细胞,收集诱导的细胞并冻融提取裂解液,通过Western blot检测诱导后细胞中HIF-1α蛋白的水平,不同条件下HIF-1α蛋白的水平通过Flow cytometry进行确证,并确定最优的诱导条件为0.3 mM CoCl2。筛选的特异性纳米抗体与天然HIF-1α蛋白的结合通过免疫共沉淀(Immunoprecipitation,IP)及Flow cytometry进行研究。0.3 mM CoCl2过夜诱导HeLa细胞并通过冻融收集细胞裂解液,特异性纳米抗体与裂解液孵育以俘获裂解液中天然HIF-1α蛋白,Protein A/G包被的琼脂糖凝胶载体与鼠抗-HA标签单抗结合以捕获Nb-HIF-1α复合物,通过Western blot以检测筛选的抗体是否可以特异性的俘获天然HIF-1α蛋白。特异性纳米抗体与HIF-1α蛋白的结合通过Flow cytometry进行了验证,并与IP结果相符。基于成功筛选的能够与天然HIF-1α蛋白结合的特异性纳米抗体,构建了能够稳定表达胞内抗体的HeLa细胞株,并对胞内抗体的表达与结合活性进行研究。基于乏氧诱导模型,通过实时定量PCR对特异性纳米抗体的转录抑制活性进行了研究。在筛选的能够与天然HIF-1α蛋白结合的纳米抗体中选择sNb44及Nb747,基于哺乳动物细胞表达质粒pCI-neo构建了胞内抗体表达载体Ib-sNb44及Ib-Nb747。针对大肠杆菌SlyD蛋白的Nb3用作构建胞内表达载体Ib-IRNb3,并作为阴性对照以研究胞内抗体的转录抑制活性。将构建的胞内表达载体转染进入对数生长期的HeLa细胞,G-418用以筛选能够稳定表达胞内抗体的HeLa细胞株。当稳定生长的细胞汇合度达到60%的时候,收集细胞并扩大培养,以获得足够的细胞。胞内抗体的表达通过Western blot进行验证,稳定生长的HeLa细胞通过冻融提取细胞裂解液,并用鼠抗-His标签单抗检测裂解液中胞内抗体的表达。Ni2+藕合的磁珠用以将裂解液中的胞内抗体纯化,并用纯化的胞内抗体进行IP,以验证胞内抗体对天然HIF-1α蛋白的结合活性。Western blot验证了胞内抗体的成功表达,IP实验证实了胞内抗体的结合活性。本研究对胞内抗体的转录抑制活性进行了研究,胞内抗体的转录抑制活性通过实时定量HIF-1相关的靶向基因的表达水平来进行验证。本课题选择了HIF-1相关的靶基因BNIP3,CA9,GAPDH与PGK1作为目标基因与评价指标,B2M,GUSB与ACTB用作内参基因,设计了qRT-PCR所需引物并对引物质量进行验证。基于乏氧诱导模型,构建了用于评价转录抑制活性的细胞模型。通过0.3 mM CoCl2诱导胞内抗体表达的HeLa细胞株,提取诱导后细胞总RNA并进行qRT-PCR。对诱导后HIF-1相关的靶基因水平进行了定量研究以确证HIF-1α蛋白水平的升高能显著增加靶基因的转录水平。研究结果表明HIF-1α蛋白的胞内水平能显著影响靶基因的转录水平,并将此模型用以评价胞内抗体的转录抑制活性。HIF-1α蛋白的化学抑制剂CAY10585用作阳性对照,本实验证实CAY10585能显著抑制HIF-1α的转录活性,从而降低乏氧诱导模型中HIF-1靶基因的转录水平。从稳定表达胞内抗体的HeLa细胞提取总RNA,并进行qRT-PCR以定量不同实验组中靶基因的转录水平。本课题实验结果证明胞内抗体Ib-sNb44及Ib-Nb747能不同程度的抑制HIF-1的转录活性。本研究筛选了针对E.coli内源性蛋白的特异性纳米抗体。在rPasB蛋白的纯化过程中,E.coli内源性蛋白作为杂蛋白与rPasB同时纯化出来,并随rPasB蛋白注射进入单峰驼体内产生免疫反应。在后续筛选针对rPasB蛋白的特异性纳米抗体的过程中,筛选得到了针对此E.coli内源性蛋白的纳米抗体。经免疫共沉淀捕获此杂蛋白并用质谱进行了鉴定,鉴定结果显示此杂蛋白为E.coli SlyD蛋白。SlyD蛋白作为潜在的杂蛋白被多次报道,因其氨基酸组成序列中包含近10%的组氨酸,对镍离子亲和柱有很高的亲和力,能够与包含His标签的重组蛋白同时纯化而成为潜在的杂蛋白。尤其当重组蛋白与SlyD蛋白分子量相近时,常用的尺寸排阻色谱将难以去除SlyD蛋白,从而对后续研究产生不利影响。基于筛选得到的针对E.coli SlyD蛋白的特异性纳米抗体Nb5,本课题开发了两套方案用于从rPasB重组蛋白中去除SlyD蛋白。在第一套方案中,基于免疫俘获技术利用Nb5从重组蛋白中捕获并去除E.coli SlyD蛋白,从而制备高纯度重组蛋白。纳米抗体Nb5与重组蛋白孵育以俘获重组蛋白中的SlyD蛋白,从而形成Nb5-SlyD复合物,过量Protein A/G包被的琼脂糖凝胶载体与鼠抗-HA单克隆抗体结合用以捕获重组蛋白中的Nb5-SlyD复合物,沉淀后的上清中即包括纯化的重组蛋白。纯化结果通过SDS-PAGE和Western blot进行验证,结果显示Nb5能够高效去除重组蛋白中的SlyD蛋白从而制备高纯度重组蛋白。在第二套方案中,纳米抗体Nb5进行了生物素标记并去除了C-端His标签,表达了生物素化的Nb5(Bi-Nb5)。过量Bi-Nb5与重组蛋白孵育,以俘获重组蛋白中的SlyD蛋白形成Bi-Nb5::SlyD复合物,显著增加复合物的分子大小。利用尺寸排阻色谱将重组蛋白rPasB与Bi-Nb5::SlyD复合物分离,结果显示rPasB能够与复合物完全分离。分离后的rPasB中含有过量的Bi-Nb5,因Bi-Nb5不含有His标签,可以利用镍离子亲和层析将rPasB纯化。实验结果用SDS-PAGE和Western blot分析,证实Bi-Nb5能够有效用于纯化rPasB中的E.coli SlyD蛋白。在第一套纯化方案中,由于鼠抗-HA单克隆抗体与Protein A/G包被的琼脂糖凝胶载体的成本较高,适用于快速制备小量重组蛋白。相反,第二种方案成本较低,Bi-Nb5能够很容易的制备并大量表达,更适用于大批量制备重组蛋白。另外,Nb5可以表达为二价抗体,从而可以进一步增加复合物的分子大小,有利于分离与E.coli SlyD蛋白分子大小相近的重组蛋白。纳米抗体Nb5可以与固相载体进行共价偶联,从而制备亲和吸附载体用于大批量的重组蛋白制备,如CNBr activated Sepharose or agarose,carboxyl-modified microspheres或latex beads。总而言之,本研究制备了大容量驼源纳米抗体免疫库及针对胞内抗原的合成库,筛选了针对HIF-1α亚基的特异性纳米抗体,并对抗体与HIF-1α蛋白的结合作用进行了研究。构建了特异性纳米抗体的胞内表达载体,并转染进入HeLa细胞,筛选了能够稳定表达胞内抗体的细胞株。胞内抗体的表达及结合活性进行了验证。基于HeLa细胞制备了乏氧诱导模型,并针对HIF-1相关靶基因构建了纳米抗体转录抑制活性的评价模型,并对胞内抗体对HIF-1的转录活性的抑制作用进行了评价。本研究筛选了针对E.coli SlyD蛋白的特异性纳米抗体,并基于纳米抗体Nb5开发了两套方案用于纯化重组蛋白中的E.coli SlyD蛋白。针对E.coli SlyD蛋白的特异性纳米抗体的筛选进一步拓展了纳米抗体在蛋白纯化领域的研究与应用。