论文部分内容阅读
热量、质量和动量传递是能源利用中的重要环节,传递过程性能的提高对节能减排意义重大。基于这些传递现象的类比性,本文引入了质量积和动量积的概念,分别代表介质中质量扩散和动量扩散的能力;定义了质量积和动量积的耗散函数;举例说明了积(热量积、质量积和动量积)的耗散而并非熵产是不涉及热功转换的传递过程不可逆性的量度;提出了最小积耗散原理就是传递过程的最小作用量原理的观点,并导出了输运系数为常数的牛顿粘性定律、傅立叶导热定律和菲克扩散定律,表明这些定律本身反映的就是最优的传递过程。为了揭示对流换热的热力学优化与传递过程优化的差别,用积耗散极值原理和熵产最小原理分别导出了对流换热性能最佳时流体速度场所需满足的相应欧拉方程。对圆管层流换热优化的结果表明,积耗散极值原理更适合于与热功转换无关的对流换热过程的优化。通过定义了湍流换热中的热量积及其耗散函数,以及采用零方程湍流模型导得了泵功给定时湍流换热性能最优的速度场需满足的欧拉方程,从而把层流换热中的热量积耗散极值原理推广至湍流换热。对平行平板通道内湍流换热的优化结果表明了微肋管能有效强化湍流换热,指出了不同Re下微肋的最佳高度。将对流换热的场协同理论推广到对流传质过程,导得了对流传质的场(速度场与组分浓度梯度场)协同方程,即为质量积耗散取极值时需满足的用于对流传质优化的欧拉方程。利用空气与水的对流传质实验验证了对流传质场协同理论,并将其用于空间站实验舱内通风排污过程和光催化反应器内对流传质过程的优化。结果表明,采用集中进风代替均匀进风,舱内污染物浓度最大值从0.47%降为0.22%;双斜内肋板式反应器比平板反应器的排污效率高22%。将对流换热的场协同理论也推广到流动过程,导得了流动过程的场(速度场和速度梯度场)协同方程,即为动量积耗散取极值时需满足的用于流动过程优化的欧拉方程。将其用于并联通道流和稠油输运过程的优化结果表明,设置适当的导流片使流动阻力减小了5%;管内形成多纵向涡的流动结构使稠油保温输运过程中的粘性耗散降低了19%。