论文部分内容阅读
7055合金是航空航天领域的重要材料,近年来随着航空航天工业的飞速发展,对该材料的综合性能提出了更高的要求,进一步改性或强化7055合金已成为当前发展大飞机用材料的研究热点和重点之一。本课题通过稀土合金化和原位颗粒强化联合方法进一步提高7055合金的综合性能。探索了稀土合金化对7055铸态微结构的影响;研究了高能超声作用下7055Al-K2TiF6体系合成Al3Ti颗粒增强7055基复合材料以及7055Al-K2TiF6-KBF4体系合成TiB2颗粒增强7055基复合材料的微结构和机制,并采用X-射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等现代分析和测试方法,分析了稀土合金化和原位颗粒增强7055基复合材料的微观组织、相组成以及内生颗粒的形貌、大小、分布特征。获得的研究结果如下:1.在7055铝合金中添加单一稀土Y后铸态组织得到明显的细化,当Y加入量0.25wt.%时晶粒细化至20-30μm,并使原来骨骼状的第二相细化,局部出现球化,但当Y过量(>0.25wt.%)出现粗化,形成Al6Cu6Y相,并呈块状或条状分布于晶界;添加复合稀土(0.15wt.%Y+0.1wt.%Ce)时,晶粒进一步细化至15-20μm,晶界呈半连续分布,且较0.25wt.%Y时更为清晰、细小,共晶相尺寸显著细化,球化的第二相增多。2.高能超声作用下7055Al-K2TiF6体系原位生成的增强颗粒为Al3Ti,颗粒尺寸在0.5-1.0μm之间,主要为短棒状或小块状,部分为粒状。添加单一稀土Y时,Al3Ti在凝固过程析出的部分得到细化,使复合材料增强颗粒趋向均匀:当添加复合稀土0.15wt.%Y+0.1wt.%Ce时,增强相颗粒进一步细化。复合材料的重熔结果表明,随重熔保温时间及重熔次数的增加,Al3Ti迅速长大,且当重熔次数达到2次时颗粒数量明显减少。一定超声强度下(0.66kW/cm2),在1-7min范围内,随着超声作用时间的增加,内生颗粒的数量先增大后减小,尺寸先减小后增大,较佳作用时间为3min左右,此时内生颗粒最为细小,体积分数最高。对于7055Al-K2TiF6体系,在一定作用时间下(3min),随着超声作用强度的增大,复合材料中的内生Al3Ti增强颗粒尺寸显著减小,数量也随之减少。3.高能超声作用下7055Al-K2TiF6-KBF4体系原位生成的增强颗粒为TiB2,尺寸在80-100nm之间,呈六棱粒状,部分颗粒出现“球化”现象。水淬试样的SEM和EDS结果表明,高能超声能显著地促进7055Al-K2TiF6-KBF4体系的原位化学反应的进程,缩短化学反应的时间。探讨了高能超声作用下熔体反应法制备内生颗粒增强铝基复合材料的动力学及反应机制,认为主要是超声处理熔体时产生的声空化效应、声流效应、机械效应和热效应的综合作用。