论文部分内容阅读
随着科学技术的发展,互联网技术逐渐渗入到各行各业,在线视频极大丰富了我们的生活。但由于大量的视频信息涌入,用户无法准确快速的获取自己想要的视频信息,就使得用户体验下降。所以为了解决用户痛点,本文通过混合推荐算法为用户提供个性化推荐服务。系统采用B/S模式的结构体系,基于MVC设计模式,使用SSH框架(Struts+Spring+Hibernate),系统的页面使用了 JSP技术,使用MySQL作为数据库管理系统,通过Web Service对数据进行综合利用。系统主要包括以下五个功能模块:(1)用户管理模块:主要负责对用户信息进行管理,完成登录注册、查看个人主页的功能,同时也可以展示用户播放历史、关注信息和收藏信息。(2)作品管理模块:作品管理模块主要分为两个部分,包括用户对视频的上传、编辑、删除等管理;也包括用户对播单的创建、编辑、删除的操作;同时也可以完成在播单中对视频进行添加和删除。(3)搜索模块:搜索模块主要可以对用户的历史搜索记录和系统的热门搜索词进行展示,也可以通过关键词进行模糊查询。(4)视频详情模块:用户点击某条视频可以进入视频详情页,在视频详情页可以对视频播放进行控制,也可以对视频进行关注、点赞、评论的操作。(5)视频推荐模块:通过用户的历史行为数据使用混合推荐算法对用户可能喜欢的视频进行推荐,为用户挖掘拓展兴趣偏好的同时也过滤用户不喜欢的视频。通过对不同推荐算法进行比较分析,结合基于内容推荐和基于用户协同过滤推荐的优点,对混合推荐算法进行设计和描述。对获取的数据进行数据清理,构建用户视频矩阵记录用户对于视频的行为;通过视频文本信息提取特征值构建视频信息矩阵,从而建立用户兴趣模型,过滤用户不喜欢的视频,从而完成推荐行为,提高用户体验,方便用户准确快捷找到需要的视频。