论文部分内容阅读
层状金属复合材料兼具两种或以上不同金属材料的性能优势,是节约贵金属和实现结构轻量化的有效途径,广泛应用于航空航天、海洋、化工、电力电子、交通等领域,成为近年新型材料成形领域的国际研究热点。Ti/Al复合板将钛层良好的耐高温性能和耐腐蚀性能,以及铝层低密度高导热系数等优异性能整合到一起,实现了“以铝节钛”及轻量化双重目标。但由于钛和铝力学性能差异很大,且钛材塑性加工工艺复杂,Ti/Al复合板高效制备始终是行业难题。层状复合材料固-液铸轧成形工艺是近年来发展起来的一种短流程新工艺,以双辊铸轧技术为基础,将固相金属带材与液体金属同时喂入铸轧机辊缝,在高温和压力共同作用下实现不同组元金属界面的有效结合,为Ti/Al复合板的制备提供了新途径。本文从数值模拟和实验两方面开展研究工作,解决Ti/Al复合板固-液铸轧成形过程非对称传热边界、Ti/Al界面复合机制、铸轧区KISS点高度预测与控制、铸轧复合带坯连续制备和扩散退火及轧制强化等一系列基础科学和技术问题,为Ti/Al复合板的固-液铸轧成形提供理论指导。铸轧区温度演化是影响固-液铸轧过程界面复合质量的关键因素。本文通过合理的模型边界简化,基于Fluent商业软件平台建立了Ti/Al固液-铸轧成形过程热-流耦合模型。针对铸轧区温度变化剧烈(高达1000°C/s)、温度信号采集频率要求高的问题,自制采样频率为600Hz温度采集系统,利用拖偶原位跟踪法测量了Ti/Al复合界面温度演化,验证了所建热-流耦合计算模型的可靠性。通过变参数模拟,研究了铝液浇铸温度、铸轧速度、出口厚度、铸轧区高度、钛带预热温度等工艺参数对铸轧区内温度场、流场以及Ti/Al复合界面和铸轧辊表面温度的影响规律。基于大量仿真数据,拟合建立了KISS点高度、铸轧区出口平均温度预测模型,为Ti/Al复合板固-液铸轧成形实验参数确定提供了理论基础。在立式双辊铸轧机上开展了Ti/Al复合板固-液铸轧成形实验,成功制备了界面结合性能良好的Ti/Al复合板,并通过轧卡实验分析了铸轧区入口至出口复合界面微观形貌演化。结果表明,由于钛与铝高温界面反应扩散难以在短时间内进行,钛带延伸变形产生新鲜金属界面成为获得良好界面结合强度的前提条件,但鉴于钛带所允许的变形量受限,钛带表面新增界面不足,界面剥离强度尚无法达到使用要求。KISS点过高则容易造成钛带轧裂甚至轧卡现象。针对此问题,提出了“固-液铸轧成形+扩散退火热处理”进行界面复合性能联合调控的工艺思路,通过扩散退火形成一定厚度的扩散层以提高复合界面结合强度,并通过开展系列实验建立了Ti/Al界面扩散层生长动力学模型,为Ti/Al界面性能调控提供了理论基础。针对固-液铸轧一次压下量大易造成钛带轧裂、扩散退火时间过长、退火后Ti/Al复合板深加工性能差等问题,研制了恒轧制力控制的Φ160×110mm双辊实验铸轧机,提出了“低载荷固-液铸轧复合组坯+轧制复合强化”一体化调控工艺思路,并开展了相关成形试验。结果表明,低载荷预紧条件下固-液铸轧成形工艺可实现Ti/Al复合板坯连续制备,但界面剥离强度仅10N/mm。将其加热至450°C后进行轧制,压下率为20%时界面剥离力达到最大34N/mm。圆筒形件拉深实验结果表明,整个试件中Ti/Al复合界面均未出现分层现象,所制备的Ti/Al复合板样品具有良好的深加工性能,验证了“低载荷固-液铸轧复合组坯+轧制复合强化”一体化调控工艺的可行性。