微波辐射下煤储层电磁-热-流-固耦合及数值模拟

来源 :河南理工大学 | 被引量 : 0次 | 上传用户:asa333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国含瓦斯煤层普遍具有“高储低压低渗”的特征,为此,一些学者提出通过水力压裂、水力割缝、预裂爆破、水力冲孔、高压脉冲水射流以及注气驱替等改造物性结构来强化瓦斯抽采的技术措施,但这些措施在实际应用中均存在一定的局限性。微波辐射作用能促使煤体温度升高及结构变化,表现出有利于瓦斯运移产出的特征,因此利用微波辐射强化瓦斯抽采是一种新的尝试。本文采用理论剖析、参数测试、数值模拟等方法探讨微波辐射下煤储层电磁-热-流-固耦合机制,主要内容包括:(1)介绍了微波加热技术,借助物理实验、理论剖析方法对微波辐射下煤体热效应、损伤机理及所含瓦斯气体的作用机制进行分析。微波辐射下煤体温度的升高通过偶极子转向极化损耗产热的形式实现;煤中含有一定比例的黄铁矿、高岭石、长石矿物组分及水分均能增强自身介电响应能力;微波热效应导致煤内气体分子能量增加,瓦斯分子吸附势阱深度变浅,损伤效应拓展气体流动通道,有利于瓦斯气体的逸散和渗流。(2)利用所构建的微波辐射煤仿真模型,研究煤体电磁热耦合效应及热力响应机制,结果表明,电介质煤的吸波影响会导致电磁场重新分布,腔体和煤体内部电磁场呈连续态稳定分布,煤中电磁场分布情况影响电磁功率损耗密度值,电场强度越大,电磁功率损耗密度值就越大;煤体温升演化趋势由损耗产热与消耗热量的表面对流散热、液水相变散热、流体传热、内部热传导综合决定,其中整体散热量主要取决于表面对流散热和液水相变散热;由于煤体选择加热性特点,高低温域分区明显,导致内部不同位置的液水蒸发速率和水蒸汽迁移速率不同,流体分布存在差异,温度和压力分布的不均匀会引起流体相对流动,促使煤体变形破裂。(3)利用微波辐射煤数值模拟手段,考察了微波频率、输入的能量、谐振腔中煤样所在位置等不同变量下煤体受热情况,结果表明,2.45 GHz频率下煤内部平均电场强度值最大,对煤体注热效果最好;能量值输入高低决定煤体平均温升幅度;输入功率越大,高低温域分区明显,功率控制煤样温度场的均匀程度;开启双微波源模式下,相比于只开启单侧微波源造成的腔体电场分布更均匀;煤样所处位置不同也会影响电磁场分布,因此煤体应统一放于腔体底部中央位置。(4)构建了微波注热煤储层的电磁热流固多物理场耦合仿真模型,利用此模型分析微波加热时瓦斯运移和煤层渗透性及孔隙率的演化规律。发现吸附态瓦斯解吸过程引起的体积应变是煤体孔隙率演化的主导因素;采用低功率微波进行辅助抽采时,有助于增产瓦斯抽采量,确保抽采瓦斯的持久性;2.45 GHz下煤层渗透率提高幅度最大,微波辐射效果最优;微波注热对煤层的改造效果在高瓦斯压力条件下最突出。
其他文献
甲烷作为一种清洁能源在生产生活中被广泛应用,但其在输运储存过程中的爆炸事故时有发生。传统无机矿物粉体抑爆剂因具有经济环保特点成为抑爆剂研究的重要方向,但其抑爆性能较差很难在工业生产中应用。最新研究表明,矿物粉体含磷官能团化可发挥重要的化学阻燃灭火特性。受此启发,本文采用葡萄糖酸溶液浸渍法和硅烷偶联剂接枝法分别制备出表面具有羟基、巯基和脲基官能团的蒙脱石改性粉体,探究这三种有机官能团对其甲烷抑爆性能
随着矿山开采深度的不断增加,矿井的高温热害现象越来越严重,同时井下空气经常处于高湿状态,尤其是掘进工作面,空气湿度经常达到90%以上,高温高湿的工作环境严重影响职工的身心健康、生命安全和企业的经济效益。本文首先通过对井下掘进巷道中风流与围岩热湿交换理论的分析,揭示风流与巷道壁面的温湿交换规律。并以平煤十三矿己四大巷为研究对象,通过对高温岩巷现场资料的收集,分别采用热源分析法、焓差法、负荷计算简化法
我国煤层普遍具有变质程度高、渗透率低、储层压力低等特点,使得瓦斯抽采效果差,容易发生瓦斯灾害事故,亟需安全高效的煤层增透新技术。低温冷冻致裂增透是一种新的煤层增透技术,煤体致裂增透效果明显。国内外学者对低温冷冻砂岩、页岩等开展了实验和理论研究,研究了冷冻时间、水饱和度对岩样孔裂隙特征影响,但对煤体致裂的影响因素及机理研究相对较少。本文对不同变质程度煤样采用核磁共振技术,研究不同冷源、不同冻融循环次
磨料气体射流加工是一种经济有效的技术,目前广泛应用于材料表面处理、钻孔和开槽等领域。同时磨料气体射流作为一种“气力化”措施,可以通过高速气体加速磨料,具有良好的冲蚀性能,而且可以避免“水力”措施引起的井眼塌陷和瓦斯解吸等问题,在煤矿开采方面具有广阔的应用前景。其中磨料的冲击动能是影响磨料气体射流破煤的关键因素,磨料的冲击动能是通过气体射流的流场结构和磨料的特性来确定的,而磨料在喷嘴和自由流场中的运
CH4爆炸作为破坏矿山安全的罪魁祸首,经常造成对巷道内物品的高压冲击与对巷道设备的高温火焰灼烧,造成生产人员伤亡的同时也带来巨大财产损失和不良的社会影响。如何更好地控制CH4爆炸是各国的专家与学者们不断探索的重要课题。本文研究如何在不阻断通风的情况下阻止爆炸火焰传播,从而更有效地消除瓦斯爆炸灾害问题。本文在实验室的现有条件上,自主搭建主动阻爆系统。该系统主要由五个部分组成:管道部分、充气部分、点火
煤体是具有复杂孔隙结构的多孔介质,内部既有微纳尺度孔隙,也有毫米级的裂隙,其中纳米级孔隙数量和结构丰富。由于煤体纳米级孔隙尺度、瓦斯压力和游离态分子扩散效应的影响,微纳尺度孔隙中仍存在着多种气体传输机制。目前,针对连续流区和滑移流区的气体运移研究较为深入,但针对过渡流区的气体流动研究较少,认识不清,关键性因素考虑欠缺,造成许多理论模型难以应用于工程实际,存在着理论计算与实际情况相差较大的现象。因此
安全、稳定与合理的矿井通风系统,对于保障矿井生产的有序、高效和低耗进行具有至关重要的作用。但是,随着矿井生产活动的不断进行,使矿井通风系统的网络结构发生变化,同时,诸如瓦斯地质、矿压与煤炭自燃危险性等矿山地质因素也悄然改变,此外,由于受到采矿活动的影响,矿井通风系统参数发生渐变和突变,这些必然对矿井通风系统的正常运行产生影响,造成不利于安全生产和技术经济不合理的状况。因此,通过引入系统工程、模糊数
温室效应及能源危机是当前国家社会所要面临的严重问题,CO2封存及驱替煤层CH4是解决该问题的有效手段且该方法通常用于高温高压下的深部地层中。因此,为研究高温高压下煤体吸附CH4和CO2的特性,本文利用德国Rubotherm磁悬浮天平,采用重量法,在313.15K的恒定温度下对粒径为0.18-0.25mm的九里山三号无烟煤进行单元气体及混合气体0-15MPa的吸附实验。得到如下结论:无论是单元气还是
煤层含水性和孔隙性是煤矿瓦斯预测与瓦斯治理的重要参数,研究煤层受载含水煤样超声特征(波速和品质因子)与孔隙变化特征关系,是发展煤层含水性和孔隙性声波物探方法的基础。针对赵固二矿二1煤层不同层理方向的煤样,采用理论分析与试验结合方法,基于Wood理论,利用自制煤储层压裂模拟及物性特征试验系统,测量在常温常压条件含水煤样波速参数。之后分析受载含水煤样波速、品质因子、孔隙率特征,探讨三轴受载干燥煤样与饱
随着我国矿井开采深度的日益增大,深部储层条件下甲烷多以超临界状态存在,为研究超临界状态下煤对甲烷的吸附特性,本文基于实验室测试和理论分析的方法,选取山西大同肥煤、鹤壁贫瘦煤、焦作九里山和安阳龙山无烟煤四种不同变质程度煤为研究对象,进行煤的等温吸附实验,结合煤样孔隙结构特征,分析超临界状态下煤对甲烷的吸附特性,主要结论如下:(1)煤样的甲烷视吸附量伴随压力的增大表现出先上升而后下降的两个阶段,对于甲