对一类线性等式约束的三块可分凸优化问题算法的研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:cry87ac
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文针对一般的带有一个线性等式约束的三块可分凸优化问题提出了一个优化算法.通过选取适当的邻近项,我们证明了该算法的全局线性收敛性,对于步长(τ)∈(0,(1+√5)/2)及惩罚参数c∈(0,+∞)成立.在分析过程中,我们只假设误差界条件成立.本算法很容易推广到解决同类型的多块问题.在实际应用问题中,该算法具有与经典ADMM算法同样的分裂结构,为实际问题的计算提供了便利.
其他文献
二十世纪六十年代以来,图论获得了空前发展,在物理学、化学、计算机科学等学科中得到了广泛应用。图的因子理论是图论的一个重要分支,也是图论研究中最活跃的课题之一。 本文
本文主要研究如下带有临界项的基尔霍夫方程:  {-M(∫Ω|▽u|2dx)△u=h(x)uq+u5, x∈Ω,u=0,x∈(a)Ω,  其中Ω(C)R3是光滑有界区域,M(t)=btk+a,a≥0,b>0,1≤k<2,0≤q<1,0<h(x)∈Lp(
本文主要研究了左正则半群,正则子集以及GV—半群。 第二章中给出了左正则半群的几个等价条件以及简单性质,证明了左正则半群条件下(完全)正则半群和(完全)π—正则半群是等价的