论文部分内容阅读
随着世界能源危机的到来,生产和制造性能卓越的供电设备(例如锂离子电池、超级电容器等)变得越来越重要。纳米级的金属氧化物/氢氧化物(MxOy/M(OH)x)是一种非常有前景的电极材料。它不仅可应用于锂离子电池领域,还可用在超级电容器上,因其比容量值较高(一一般高于碳材料或石墨材料的2-3倍)。尽管如此,这类材料的循环使用寿命及电池/电容的倍率性能仍旧满足不了实际应用的需求。进一步地提高供电设备的综合性能成为了人们当前急于达到的目标,而实现该目标不能仅仅地依赖于先进电极材料的开发之上,而应当把一部分注意力放在“如何设计与制造性能优越的电极结构”。作为电极结构化设计的一种类型,不同维度的MxOy/M(OH)x纳米结构阵列在近年来引起了广泛地关注,因为相比于粉体材料而言,阵列电极具有较为独特的几何/外形结构特点。一方面,与基底材料保持紧密接触的纳米结构阵列可为电子的快速传递提供有效的通道;传导电子可以从反应活性位沿着该通道迅速地转移至集电极上,而不会像粉体材料那样,电子在无序的纳米晶颗粒间任意地穿行。由此,该阵列设计会有效地提高电极的充放电倍率性能。另一方面,阵列设计还免去了添加剂材料的使用。采用纳米结构阵列设计可以免去复杂的电极制备/加工过程(例如将活性材料与碳黑、聚合物材料进行搅拌、混合以及涂覆等操作工艺),并且还省去了对电极的压制工序。另外,纳米结构阵列还可以为不良的应力变化(特别是由锂离子嵌入/脱出时所造成的结构变化)起到一定的缓冲作用。该论文旨在开发简单且有效的方法,在集电极上制备不同维度、结构的MxOy及M(OH)X(M主要为Co和Ni元素)的纳米结构阵列。更重要的是,我们还系统地研究了它们在锂离子电池及超级电容器中的电化学储能机理,其主要内容包括如下几点:1.单相钻基金属氧化物/氢氧化物纳米线阵列的制备及其电化学储能机理(a)首先,通过一个简单的、无需模板辅助的两步法,在多种基底上实现了大面积一维C0304纳米结构化阵列的合成。经过可控的水热反应过程及长时间空气中的煅烧处理之后,C0304纳米线阵列可以牢牢地生长于诸如玻璃片、陶瓷片等被报道为不适宜氧化物MxOy生长的基底之上。在整个制备过程中,我们发现反应液中引入的F离子对纳米线阵列的生长起到了非常重要的作用。此外,这种方法还适用于其它导电基底材料,比如ITO玻璃、Ti片及Fe-Co-Ni合金片等。与传统的模板辅助合成法相比较,我们的方法具有普适、高效及成本低廉的特点。(b)进一步地,通过对上述的两步法进行了改良,在柔软的Ti片基底上大面积地制备得到了多孔的CoO纳米线阵列。该阵列与基底材料之间有着紧密的电学接触。同时地,我们还证实了在惰性气氛的保护下,单相的CoO可由碱式碳酸钴前驱体材料经由热分解反应而生成多孔的CoO纳米线阵列。当其被直接用作阳极时,能在不同的电流密度下表现出较好的倍率充放电性能,这主要归因于CoO材料本身所具有的高度可逆的电化学属性,以及独特的、来源于一维纳米阵列设计的结构优势。(c)采用了一个简单的水热法,在石墨片基底上大面积地合成了约20gm高的a-Co(OH)2纳米线阵列。我们直接将该阵列作为超级电容器的电极材料,并对其储能机理进行了初步地研究。另外,我们还专门采用了超声检测的方法,验证了a-Co(OH)2纳米线阵列与石墨基底之间存在着较强的结合力作用。电化学测试表明,a-Co(OH)2纳米线阵列具有较高的比电容量(~642.5F/g),较好的充放电倍率性能及容量维持性能,这主要归功于其电极的一维纳米结构特点及牢固的结合力作用。此外,通过该方法,在碳布纤维基底上实现了a-Co(OH)2纳米线阵列的外延生长,并将该产物作为了柔性超级电容器的电极材料。研究结果表明,a-Co(OH)2纳米线阵列/碳布电极具有优异的电容性能,其面电容密度高达1.13F/cmm2,且循环性能优越(4000次的变速率循环测试后,容量值还保持近100%),充放电倍率性能较好(在非常高的电流密度40.8mA/cm2下,电容量还可维持为最大值的46.7%)。弯曲测试证实了该电极具有较好的机械耐久性:即便电极处于非常小的弯曲半径下,大多数的纳米线阵列还可尚存,且其容量及阻抗值与未弯曲的电极相比,均不会发生太大的变化(容量值仅损失7.5%,其阻抗值仅改变11%)。储能机理分析表明,纳米线阵列设计有助于其电化学储能性能在弯曲状态下的维持。2.复合相CoO/CoTiO3纳米管阵列的制备及其锂离子电池储能机理基于以前单相氧化物纳米线的制备研究,我们提出了一种基于柯肯达尔效应的固相反应方法,将简单的、具有核壳结构的Co(OH)x(CO3)y@TiO2纳米线阵列演化为整体的、由氧化物构成的CoO/CoTiO3复合纳米管阵列。另外,该演化得到的纳米管阵列还完美地继承了前驱体阵列的几何外形。在演化的过程中,Co(OH)x(CO3)y纳米线阵列分解为由COCO3纳米颗粒,其间产生的纳米孔结构不仅方便了柯肯达尔成核过程,还使得内外层CoO-TiO2之间的扩散反应发生在一个较低的温度(4500C)条件下。演化生成的CoO/CoTiO3纳米管阵列具有封闭的管状结构以及特别的“内-外”复合结构特点。我们对该复合相结构化电极设计进行了锂电池储能机理研’究。结果表明,CoO/CoTiO3复合纳米管阵列具有较高的比容量及优异的循环性能,远胜于单相的CoO纳米线阵列。储能机理分析表明,纳米管阵列构型及独特的CoO/CoTiO3“内-外”复合结构是导致其锂电池高性能的原因。3. Co-Fe氧化物纳米片阵列的制备及其锂离子电池储能机理采用一个简单的水热方法,在Fe-Co-Ni合金基底上实现了大面积的Co-Fe层状双羟基金属氧化物(又名水滑石,简称LDH)纳米片阵列的直接生长。长时间(30分钟)的超声检测证实,Co-Fe LDH纳米片阵列与合金基底之间存在着紧密的结合力作用。Co-Fe LDH纳米片阵列在充满葡萄糖分子的反应液中生长;当LDH纳米片阵列原位生长的同时也完成了碳源包覆于阵列表面的过程。在惰性气氛的保护下,纳米片阵列样品经由热分解反应及葡萄糖的碳化过程,演化成了碳/Co-Fe氧化物纳米片阵列,且生成的阵列样品可以直接被用作为锂离子电池的阳极使用。与Co-Fe氧化物纳米片阵列及采用之前报道的方法制备的碳包覆阵列样品相对比,该碳/Co-Fe氧化物纳米片阵列具有较高的比容量值及较好的循环性能,这主要归因于独特的二维纳米结构阵列设计以及原位的碳包覆方法。4.三维复合纳米结构化阵列的制备及其电化学储能机理(a)首先,报道了一种巧妙有效的方法,即通过简单的热处理及CVD法将预生长于Fe-Co-Ni基底上碱式碳酸镍前驱体阵列演化为具有复合相的三维MCNTs/Ni纳米结构化阵列。基于对整个实验的跟踪观察结果,我们对三维MCNTs/Ni复合纳米阵列的形成机理进行了详细的分析与讨论。在结构演化的过程中,碱式碳酸镍前驱体最初演化为多孔的Ni纳米片阵列。随着反应温度的升高,CVD反应开始进行,使得在多孔的Ni纳米片阵列表面原位地生长出多壁的CNTs,最终形成了一个非常有趣的"CNTs柱子建于Ni纳米片基底之上”的复合式构型。采用其它含Ni的氢氧化物作为前驱体材料,也可得到类似的三维复合纳米结构化设计。经充分地活化之后,该MCNTs/Ni复合纳米阵列可直接被用作高性能的超电容电极材料。电化学测试结果表明,相比于Ni片及Ni纳米片阵列而言,MCNTs/Ni复合纳米阵列具有较高的面积比容量(~0.901Fcm-2),非常好的循环性能(5000次的循环测试后,容量值还保持近1000%)及充放电倍率性能,这主要归因于阵列的复合结构设计,以及CNTs与Ni纳米片之间产生的协同效应。(b)接着,通过二次生长及化学还原的方法,将碱式碳酸镍前驱体纳米片阵列逐步演化为相互连接的、具有核壳结构的MnO2/Ni三维复合纳米结构化阵列。我们对整个实验过程进行了跟踪研究,对该阵列的演化及形成机理进行了详细的表征、分析与讨论。Ni/MnO2核壳复合纳米片阵列具有“金属核-氧化物壳”的结构特点,其非常适合作为锂离子电池应用领域,尤其是在快速充放电应用方面。当该Ni/MnO2核壳复合纳米阵列直接被用作为锂离子电池的阳极时,能够表现出较好充放电的倍率性能及循环稳定性。