【摘 要】
:
延迟微分方程作为泛函微分方程的一个重要分支,被广泛地应用于物理,生物,经济,医学,工程,以及航天航空等众多领域。因此对其数值算法的研究具有重要的科学意义。现有的一些文
论文部分内容阅读
延迟微分方程作为泛函微分方程的一个重要分支,被广泛地应用于物理,生物,经济,医学,工程,以及航天航空等众多领域。因此对其数值算法的研究具有重要的科学意义。现有的一些文献对延迟微分方程的数值稳定性都做了一系列研究,也取得了一些进展。但是大部分数值方法只局限于低阶方法,到目前国内外对高阶方法的研究尚少。本文主要通过改进的线性多步法研究单延迟微分方程和多延迟微分方程的数值稳定性。
在本文第一章,我们简要介绍了延迟微分方程在不同领域的应用,以及在近几十年内国内外对单延迟微分方程和多延迟微分方程的数值稳定性研究。并且在此基础上,提出了本文研究的主要工作。
在本文第二章中,我们引入了单延迟微分方程和多延迟微分方程的概念,以及两个方程解析解的渐近稳定条件,并且简要地介绍了线性多步法的基本定义和A稳定的定义,研究了线性多步法的数值稳定性,得到了方法是渐近稳定的充要条件。最后阐述了本章小结。
在本文第三章中,我们介绍了本论文所采用的处理延迟微分方程的数值方法,即改进的线性多步法。研究了整数节点上单延迟微分方程的数值稳定性,并得到了方法是渐近稳定的充要条件。最后通过具体算例予以证明。
在本文第四章中,研究了整数节点上多延迟微分方程的数值稳定性,并得到了方法是渐近稳定的充要条件。最后通过具体算例予以证明。
在本文第五章中,基于对上述问题的研究进行总结性的概括。
其他文献
在经典仿射微分几何中,Pick-Berward定理是最令人关注的结果之一.该定理的一个自然推广是对具有▽K=0(其中▽是诱导的仿射联络,K是非退化仿射超曲面上的差张量)的仿射超曲面的分
自J.P.G.L.Dirichlet和B.Riemann的开创性工作以来,人们引入并广泛研究了各种Dirichlet级数和zeta函数.Dirichlet级数和zeta函数的非消没结果在数论中对了解素数分布起着重要
反散射作为重要的数学物理方法,主要用于研究非线性可积偏微分方程.2005年,Manakov和Santini提出了一种新的反散射方法,通过研究与单参数向量场形式的Lax对相联系的正问题和反问
血液模型保持定常解,即它的流通量梯度非零,并且被源项精确平衡掉。设计真正的具有高阶精度且能保持定常解的数值格式,是一个极具挑战性的任务。 在本论文中,我们设计了血液模
疟疾是由疟原虫引起并经雌性按蚊叮咬传播的一种传染病,是目前危害性最大的蚊媒疾病,严重威胁着全球近一半人口的健康.实际中疟疾感染者在家庭或医院接受护理和治疗时往往会少受蚊子的叮咬.我们在经典的Ross-Macdonald蚊媒传染病模型的基础上引入一个隔离仓室,建立了一类带有不完全隔离的疟疾模型.根据微分方程与传染病模型的理论和方法,我们定义了模型的基本再生数?_0,讨论了平衡点的存在性和稳定性.特别
本论文主要研究了2n周期二元序列的密码学性质,主要是序列的线性复杂度和错误线性复杂度的相关结果,给出了确定序列的错误线性复杂度的新的结果和一些新的算法,使得序列的线
本文以二维X射线CT断层扫描图像为研究对象,引出所要论述的问题——两种基于CT图像的分割方法研究及改进。首先,我们介绍了与课题相关的预备知识,如数字图象处理、图像分割等