论文部分内容阅读
无线传感器网络(WSN)是当今热点研究领域之一,基于低成本、低功耗、体积小、自组织能力强等特点,WSN在军事国防、环境监测、城市交通等领域具有广泛的应用前景。利用WSN进行目标跟踪具有重要的应用价值,与传统的网络相比,WSN更隐蔽、更可靠、更高效。在现实环境中,目标的状态方程或传感器观测方程往往是非线性的且环境中有噪声的干扰,同时,目标的动力学方程输入干扰可能部分未知,这使得问题的研究更加困难。因此,在跟踪过程中需要采用合适的滤波算法来解决非线性和噪声问题。EKF算法是应用最广泛的非线性滤波算法,它是基于卡尔曼滤波器原理,对非线性函数部分利用泰勒展开进行线性化处理,适用于非线性化程度不高的系统。UKF是基于UT变换和卡尔曼滤波器结合的一种滤波算法,滤波精度比较高。以上两种算法是针对高斯分布的系统,对于非线性非高斯滤波问题,目前比较主流的是粒子滤波算法,算法简单易操作,但通常算法计算量比较大,且样本点比较容易退化。基于以上分析,本文设计了一种基于非线性观测器的目标跟踪算法,针对状态方程部分未知,观测器方程为非线性方程,且在跟踪过程中有噪声干扰的一般目标系统,设计状态观测器,以二阶线性状态方程为例,利用Lyapunov稳定性定理和依均方收敛定义求取到满足误差系统渐近稳定时的反馈增益量,从而在该反馈增益作用下能够实现对目标的跟踪预测。针对传感器感应距离有限,目标超出感应范围丢失的情况,利用移动式传感器设计稳定的传感器队形控制策略以实现对目标的k(k≥3)覆盖,该策略以有向树的通信拓扑结构为基础,结合传感器动力学方程,利用虚拟传感器趋近思想和反馈控制理论设计出满足要求的队形控制器,并对队形控制算法的收敛性作出数学证明。最后,分别对提出的目标跟踪算法和队形控制算法进行仿真验证,通过与EKF的仿真比较,证明基于非线性观测器的目标跟踪算法有较好的跟踪效果,队形控制算法能高效的实现对运动目标的持续跟踪。