论文部分内容阅读
通过对生物序列进行比对,我们能够预测未知序列的功能。而现在最前沿的序列比对算法有:动态规划算法、遗传算法、人工神经网络和隐马氏模型等。而本文就是基于隐马氏模型对生物序列比对问题进行深入研究。研究隐马氏模型就是要研究三个基本问题:估值问题、解码问题和参数估计问题。对于每个问题,我们有相应的解决算法。隐马氏模型假设观测值独立,而在实际中并不是这样的。本文通过引入模糊测度和模糊积分来放松隐马氏模型的独立性假设,进而进行生物序列比对。在引入模糊理论之后,我们称隐马氏模型为模糊隐马氏模型。 本文首先介绍隐马氏模型,并且提出隐马氏模型需要解决的三个问题及其解决算法。然后介绍隐马氏模型在生物序列比对中的应用及其局限。针对隐马氏模型的局限,我们提出改进的用于生物序列比对的模型——模糊隐马氏模型。这种模型是在隐马氏模型的基础上引入了模糊理论。由统计学知识知道测度具有可加性,而模糊测度的主要特征就是非可加性。因为模糊测度是单调的,所以当隐马尔科夫模型引入模糊测度后其统计独立性得到放宽。文中给出了模糊隐马氏模型的算法:模糊前向算法、模糊后向算法、模糊Viterbi算法和模糊EM算法。若我们引入的是概率测度和Choquet模糊积分,那模糊隐马氏模型就变成了经典的隐马氏模型。模糊测度包括可能性测度、似然测度、λ模糊测度、信任测度、必要性测度和自对偶测度等等。在本文中我们引入可能性测度(最保守的模糊测度)和Choquet模糊积分。将引入可能性测度和Choquet模糊积分的模型应用于实验中。经过实证分析,说明改进后的模糊隐马氏模型在处理生物序列比对问题时效果更好。