论文部分内容阅读
冷源系统的能效水平对中央空调系统运行、公共建筑节能都有较大影响,国家于2019年提出建设高效冷源机房的目标,针对众多既有大型公共建筑冷源系统进行控制策略的节能优化,是实现该目标经济且有效的手段。物联网技术的高速发展为公共建筑积累了庞大的运行数据,建立数据驱动的节能优化控制策略,能够充分挖掘数据的使用价值,推动建筑智能化。强化学习可以被用于智能控制系统中,通过智能体在环境中的不断尝试获得最优策略,是一种依赖数据驱动的控制方法。研究基于强化学习的建筑冷源系统控制策略的节能优化问题,能够充分利用已有冷源管理系统中累积的大量运行数据,顺应当今控制智能化的趋势。本文以夏热冬暖地区某大型办公建筑冷源系统为研究对象,提出基于强化学习的冷源系统节能优化控制策略,主要包括以下研究工作:(1)介绍强化学习的主要理论与算法,在此基础上,将冷源系统的运行过程抽象为马尔可夫决策过程,提出冷源马尔可夫决策模型;在研究强化学习系统组成元素的基础上,确定各元素在冷源中的形式,建立冷源强化学习系统,并确定该系统的运行流程。(2)针对办公建筑冷源系统通常难以用于控制器实际训练的情况,研究系统环境建模问题,为进一步提高模型的预测效果,提出基于模型堆叠的室内温度、室内相对湿度和冷源系统能耗黑箱预测模型。选取Xgboost、RF和SVR作为基模型,岭回归作为元模型,通过对比不同基模型组合的预测效果,确定三个预测模型的结构,在此基础上研究并建立了系统环境仿真平台,进一步完善了系统功能。(3)针对常规控制策略缺乏自我学习能力和依赖模型准确性等问题,提出基于深度确定性策略梯度算法的冷源节能优化控制策略。首先分析影响算法的主要超参数,采用启发式搜索的方式对超参数进行寻优,确定了主要超参数的取值范围;然后在对控制器进行策略引导的基础上,完成节能优化控制策略的仿真研究工作,分析并展示了仿真结果;最后选取PSO控制策略与规则控制策略进行比较分析,结果表明强化学习控制策略下的冷源系统总能耗减少了6.47%和14.42%,平均室内热舒适性提升了5.59%和18.71%,非舒适性时间占比减少了5.22%和76.70%。(4)针对控制策略节能优化方法工程应用较为困难的问题,开发“办公建筑冷源系统智能控制平台”,完成对研究成果的工程化,实现了系统监测、系统仿真、策略优化和策略运行等主要功能。