论文部分内容阅读
电阻抗断层成像技术(Electrical Impedance Tomography,EIT)是当今生物医学工程学重大研究课题之一,具有功能成像,无损伤和医学图像监护三大突出优势,是一种理想的、具有诱人应用前景的无损伤医学成像技术。EIT电极系统直接与人接触,位于系统的最前端,是整个系统的关键部分之一。目前电阻抗断层成像技术现正处于一个从实验室研究阶段向临床应用过渡的时期,临床EIT直接与人体接触,电极系统面临一系列的问题需要研究和改进。而电极系统上发生的事件,包括有用信息、噪声、伪差、接触阻抗、极化电压等,都会进入后续电路被放大、传输,参与信号处理,影响图像重建结果,无用信息有时甚至会淹没有用信息,对系统检测灵敏度和图像重建质量的影响都非常大。场域边界移动形变造成的电极系统不确定性和电极排布方式也是影响成像结果的因素。根据实验室研究和临床研究的不同需求,研究电极特性,优化电极系统性能,具有十分重要的意义。论文回顾了EIT研究历史,分析了EIT电极系统目前亟待解决的问题。在介绍EIT成像基本原理、硬件系统、成像算法的基础上,提出EIT图像重建质量的评价方法,建立了EIT成像软硬件平台和测试系统,比较了几种重建算法的成像效果及其局限。基于强制等势点有限元模型,研究了电极类型、电极结构参数、电极数和激励测量模式对成像结果的影响,提出了电极系统优化设计方案。设计了一种用于EIT实验、参数可变的盐水槽电极系统,电极片拆卸方便,结构简单。进行了EIT电极阻抗特性研究。提出了EIT电极阻抗特性的意义和重要性。对目前EIT人体实验通常采用的一次性心电电极进行了交直流阻抗特性测试和研究,提出了使用注意事项。针对肺功能EIT检测时,由于电极运动和形变导致的图像伪差问题,采用改进的正则化算法和基于椭圆模型成像方法,改善图像质量。设计了手持式平面电极系统,研究了平面电极阵列EIT成像方法。建立了3D有限元模型,应用基于等势面反投影法的改进的加权重建算法,仿真重建出了多深度层的断层图像,为EIT乳腺测量新方法奠定了基础。