论文部分内容阅读
本文利用TOMS和OMI组成的臭氧总量月平均数据集和ERA-Interim、MERRA-2大气温度再分析资料,使用线性回归、EOF分解、IDW插值等方法,分析1980—2018年青藏高原上空臭氧总量与大气温度的分布及变化过程。结果表明,1980—2018年内,高原臭氧总量呈现减少趋势,递减速率为0.34DU/a,同期高原上空大气温度在平流层下部呈现降温趋势(0.01—0.08℃/a),在对流层上部呈现增温趋势(0.01—0.07℃/a)。以臭氧总量最低值出现的时间为节点,青藏高原臭氧总量和大气温度均在2008年以来表现出逆转变化趋势,其中春季逆转趋势最显著。高原臭氧总量由2008年之前的减少趋势(-0.54DU/a)逆转为增加趋势(0.47DU/a)。同期大气温度在平流层下部由原来的降温趋势逆转为增温趋势,在对流层上部由原来的增温趋势逆转为降温趋势。利用SUBV(/2)星下点臭氧遥感资料,结合大气温度再分析资料,对青藏高原内典型地区(西藏自治区拉萨市和青海省共和县)春季臭氧和大气温度变化趋势的差异性进行对比。拉萨和共和两个地区的臭氧和大气温度逆转趋势均发生于1999年。1999年以来,拉萨(0.59DU/a)臭氧总量增加速率稍快于共和(0.37DU/a),其中,拉萨在63.9—25.5hPa上的臭氧增加趋势(0.05—0.08DU/a)也要快于共和(-0.02—0.03DU/a)。同期,拉萨在平流层下部有较快的增温速率,共和增温速率稍慢,在对流层上部拉萨的降温速率也要快于共和降温速率。对臭氧总量和大气温度进行相关性分析,探究臭氧变化与大气温度变化之间的可能联系。相关系数表明,高原地区臭氧总量与大气温度之间具有良好的相关关系:臭氧总量与平流层下部大气温度呈现正相关关系,相关系数为0.4—0.9,与对流层上部大气温度呈现负相关关系,相关系数为-0.4—-0.9。利用回归系数探究大气温度对臭氧总量改变的响应:臭氧增加(减少)时,大气温度在平流层下部呈现增温(降温)趋势,在对流层上部呈现降温(增温)趋势,并且臭氧变化较快时,大气温度也具有较快的变化速率。青藏高原地区大气温度变化趋势与同期臭氧总量变化特征紧密相关,由此认为,高原臭氧总量的快速恢复可能是引起大气温度逆转趋势的一个重要影响因素。