论文部分内容阅读
自上世纪八十年代准晶首次在Al-Mn体系中被发现以来,就成为材料科学研究领域的新宠,受到了材料研究工作者的极大关注。经过几十年的不懈努力,诸多其它体系的准晶继而被一一发现。镁系准晶因其独特的结构类型成为材料界近年来研究的一大热点。镁系准晶具有高硬度、低表面能、耐热性和耐腐蚀性等优点,而且能与镁基体产生较强的界面结合力,所以被广泛用作镁合金的强化相。Mg-Zn-Nd二十面体球形准晶作为一种新型的镁系准晶,它的发现为准晶增强的高性能镁合金的开发和研究开辟了一条新的思路。Mg-Zn-Nd二十面体球形准晶属热力学较稳定的三维准晶,目前对于它的详细报道很少,各方面的研究仍处于起步阶段,尤其是不同的凝固速度和不同的热处理工艺制度对Mg-Zn-Nd球形准晶组织演变的影响规律缺乏系统的研究。因此,本文以Mg-Zn-Nd球形准晶的制备入手,从凝固速度和热处理两个方面对Mg-Zn-Nd球形准晶组织演变规律进行系统的探究,这对于二十面体球形准晶的理论和应用都具有十分重要的意义。本文分别通过普通铸造凝固和快速凝固技术制备Mg-Zn-Nd准晶合金并对其进行热处理。采用X射线衍射分析(XRD)、扫描电镜(SEM)、差热分析(DSC)、透射电镜(TEM)等测试手段,综合分析不同成分合金的微观组织;探讨Mg-Zn-Nd准晶合金中球形准晶相的形成机制;讨论不同凝固条件和凝固速度对Mg-Zn-Nd准晶合金的微观组织、凝固路径、凝固特性,以及对球形准晶相的微观形貌、数量和成分的影响;研究不同的热处理制度对Mg-Zn-Nd准晶合金的微观组织和相转变的影响,以及对球形准晶相的形貌、成分的影响,进一步探究Mg-Zn-Nd球形准晶的热力学稳定性。结果表明:Mg-Zn-Nd准晶能够通过普通铸造凝固和快速凝固等方法获得。不同的凝固速度下,准晶I相均可直接从过冷熔体中析出。通过普通铸造凝固制备的合金中,Nd元素的含量和Mg/Zn的原子比值对合金的微观组织有较大影响。当合金中Mg/Zn的原子比值保持在2.5~2.6之间,Nd的原子百分含量为1.2%时,合金微观组织中的球形准晶相数量最多且均匀的分布在Mg7Zn3基体相中,合金中不含有其它的相。二十面体球形准晶相的形成同样遵循形核和长大的规律,最终形貌是在形成过程中受到Nd元素的吸附作用,生长界面形式和界面稳定性等因素共同作用的结果。通过普通铸造方法制备的不同凝固条件的Mg-Zn-Nd准晶合金块体,其微观组织、凝固特性以及组织中准晶I相的微观形貌都有所不同。在此实验中,合金的浇注模具不同其凝固速度也不同。铜模的凝固速度最大,其合金中所含的球形准晶数量最多、尺寸最小、圆整度最高;随着浇注模具的不同,凝固速度减小,合金中球形准晶相的数量减少、尺寸增大、微观形态开始发生变异。通过快速凝固方法制备的Mg-Zn-Nd准晶合金薄带,随着转速的提高,凝固速度的增大,合金组织中单位面积所含准晶相数量不断增多,尺寸逐渐减小。当转速大于等于800转/分时,组织中的Mg-Zn-Nd准晶颗粒形成了大量的微晶。Mg-Zn-Nd准晶合金在300℃条件下经50h热处理后,球形I相都能稳定存在并未发生变化,且铸态合金中的Mg7Zn3基体相分解成MgZn相和α-Mg相的混合组织,其中还有少量的MgZn2相存在。说明球形I相在300℃时有良好的热力学稳定性,不会发生分解或熔化。而Mg-Zn-Nd准晶合金在350℃条件下经30 h热处理后,合金组织发生明显变化,球形I相发生熔解现象,有的形态很不完整,有的已经熔解殆尽。350℃-30h热处理后合金组织中的其它相也是MgZn相和黑色的α-Mg相的混合组织,同时存在少量的MgZn2相。说明球形I相在350℃时热力学不稳定,不能稳定的存在。