离子和气相原子,表面碰撞的电荷转移过程及能损的研究

来源 :兰州大学 | 被引量 : 3次 | 上传用户:1igang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前的实验工作主要包括两部分:一是在巴黎的LCAM实验室,完成了在掠射条件下离子-表面散射的能损的测量和大角度散射的条件下电荷转移的研究;二是在兰州大学完成了离子-原子碰撞的电荷转移的研究。本论文具体包括以下几部分:在第一章描述了离子-表面/原子相互作用的理论模型和相关概念。在第二章描述了本论文使用的实验仪器和技术。在第三和第四章,完成了1-4keV H+,He+和F-离子在金表面散射的表面沟道和能损的研究。实验上发现能损依赖于表面的方位角的改变,同时在能谱图上观测到多峰结构。考虑了表面不均匀电子气的离子轨迹和相关能损谱的模拟得出多峰结构源于不同的轨迹类型。能损的计算和实验结果吻合很好。在第五章描述了Li+离子在Au(110)和Ag/Au(111)表面散射的电荷转移。实验上发现中性化份额对入射能量,出射角度,以及方位角均有依赖。其次在高功函表面如此有效的中性化是和传统的共振电荷转移模型相矛盾的。因此根据最近的理论研究成果,修正了传统的共振电荷转移模型,并给出了和实验结果大致相符的计算结果。我们用STM研究了Au(111)基底上生长超薄Ag膜,同时利用低能Li+离子背散射研究了电荷转移过程。入射离子中性化份额随入射能或出射能的增大而单调的减小,且并没有得到像人们预期的由于超薄膜Ag和基底Ag电子结构,能带结构的差异而引起中性化份额的不同。相比传统的jellium模型,改进的模型计算的结果和实验符合的很好。在第六章介绍了MeV Cq+离子和Ar靶碰撞的电荷转移的研究,给出了入射离子丢一个电子情况下的靶电离截面比的标度,研究发现入射离子丢(俘获)一个电子的情况的靶电离截面比或靶多电离与单俘获截面比均强烈依赖于入射离子的电荷态,而且随入射能的变化,各个反应道的变化激烈。实验上还观测到入射离子丢一个电子的情况下的靶多电离与纯单电离截面比随入射能量有振荡结构。在第七章我们还修改了过垒模型来处理多电荷态离子和氢原子和氦原子靶在中能区碰撞情况下的俘获和电离截面。这是一种非常简单的快速估算截面的方法,具有解析的表达式,容易理解物理实质,关键是能够给出正确的截面值。
其他文献
节杆菌是土壤中最常分离到的土著性需氧微生物。节杆菌属的成员不仅可以降解各种环境污染物,而且有能力抵御各种环境压力,例如低温、干燥、饥饿、电离辐射、高渗透压等。有报道指出,节杆菌的抗逆性可能与其体内存在多种海藻糖合成的基因有关。在大多数生物体内,海藻糖主要生物合成途径包含6-磷酸海藻糖合成酶(TPS)和6-磷酸海藻糖酯酶(TPP)。由于TPP丰富的生物学功能及其在抗逆境胁迫中可能发挥的重要作用引起了
本文就数值天气预报中历史数据的使用做了研究,针对数值天气预报是微分方程初值问题,而预报员实际做预报都使用近期实况资料的矛盾,给出了一种全新方法来使用历史数据。对于这一问题的数学解决方案,将预报方程分为线性微分方程和非线性微分方程分别讨论。对于预报方程是线性微分方程的情况,用本征值理论求得解析解;而对于预报方程是非线性微分方程的情况,用变分原理和欧拉方程,讨论了非线性微分方程解的存在性,然后用微分方
反应扩散系统是描述客观世界的重要模型,它的研究对于理解现实世界具有重要的指导意义.特别地,由于周期解和Turing模式是现实中的重要现象,已成为动力系统的重要研究课题之,并且在物理、化学和生物等许多学科领域中得到了广泛应用.基于此,本文主要研究几类反应扩散系统的分歧周期解和Turing模式首先.考虑了时滞扩散捕食系统的分歧周期解问题.对于这一时滞系统.当时滞小于某个临界值时.其正常数平衡解渐近稳定
混沌控制与同步和复杂网络的研究都属于国际上的热点前沿课题.本文对时滞系统和复杂网络的动力学进行了研究,涉及时滞系统的混沌控制、复杂动态网络系统的同步与控制、复杂网络中的一致性问题.主要工作如下:1.深入研究了一类非线性时滞系统的混沌控制问题.这类系统在不同的时滞区域呈现出不同的动力学性质.除了基本解,在长时滞区域,还有奇倍频谐波解;在中时滞区域和短时滞区域还有两类不同的新解,这些解在非线性时滞系统
学位
在这篇博士学位论文中,我们主要在光滑的区域Ω(?)RN中考虑具有零边值条件的一类带有奇异项的非线性反应扩散方程弱解的存在唯一性及解的长时间动力学行为。在本篇博士论文中,我们主要考虑如下带有奇异项的非线性抛物型方程初值问题整体正解的存在性,唯一性以及在序区间(ε(?)1,c(?)1s)上整体吸引子的存在性等问题,其中(?)1为-△的第一特征值所对应的特征函数.我们首先利用-△的第一特征值所对应的特征
学位
对半群的Cayley图的研究是近年来一个十分活跃的研究领域,本文定义了半群的Cayley图的一种推广图Г图,研究了半群的Cayley图和Г图的结构和性质.设S是一个半群,T1,T2是S的两个子集,且T1与T2中至少有一个是非空集合.称一个有向图为S的Г图,记为Г,如果V(г)=S,E(г)={(u,υ)∈S×S|u≠υ,存在t1∈T11,t2∈T21,使得υ=t1ut2).当T1=T2=S时,S的
本文主要研究半群动力系统与平衡点之间的关系.讨论由半群动力系统寻找平衡点的问题,以及通过多种方式考察了构造半流正不变集的方法.具有Lyapunov泛函的半群动力系统与平衡点相应于变分理论中的下降流不变集方法的很多概念在方程中有着自然的对应关系.因而首先对这类系统建立了一些由半群寻找平衡点的方法.与下降流不同的是,系统半群在负时间上一般是不适定的,这就需要结合动力系统的一些概念和性质来克服这一困难.
节杆菌是一种广泛存在于土壤中的微生物。它可以降解污染物,并且生成生物能源例如烃。另外节杆菌是现在发现的抗逆较强的微生物中的一种。在应对渗透压胁迫以及干旱胁迫上该菌表现的更加出色。因此现今国际上对于这一类微生物的研究越来越热。然而节杆菌抗逆的分子机制仍然未知。本研究发现节杆菌受到高渗透压胁迫以后细菌的形态会由单个细菌存在形式逐渐聚集成团呈类似菌丝体状生长。节杆菌的otsA (海藻糖六磷酸合成酶)缺失
本文主要研究具有纯正断面的正则半群与分别具有恰当断面和拟恰当断面的富足半群,共分六章.第一章为本文的引言和预备知识.第二章引入左单纯正断面的概念.给出例子说明左单纯正断面是拟理想纯正断面的真推广.研究了具有左单纯正断面的正则半群并给出了这类半群的一个结构定理.第三章引入S-纯正断面的概念.给出例子说明S-纯正断面是左单纯正断面的真推广.给出了具有S-纯正断面的正则半群的一个结构定理.作为此结构定理
原子激光冷却与陷俘是发展最为迅速、成果最为辉煌的物理学研究领域之一。其中,腔冷却原子为研究超低温的冷原子提供了一个非常好的理论平台。近年来物理学家在理论、实验和数值模拟上对原子的腔冷却展开了广泛的研究。本文建立了量子微腔与三能级原子相互作用模型,通过半经典理论和量子理论对三能级原子的腔冷却做了详细地讨论。首先我们系统地回顾了原子的激光冷却的发展历史。扼要介绍了激光冷却和陷俘中性原子的发展脉络,以及