【摘 要】
:
三通作为供热直埋管道中经常用到的重要局部构件,是管系中不可回避的薄弱环节,其对整个管系的稳定安全运行起着至关重要的作用;另外,由于其几何结构复杂和数学分析的困难,至
论文部分内容阅读
三通作为供热直埋管道中经常用到的重要局部构件,是管系中不可回避的薄弱环节,其对整个管系的稳定安全运行起着至关重要的作用;另外,由于其几何结构复杂和数学分析的困难,至今对供热领域三通理论研究相比弯头、变径等明显滞后,特别是压制三通,其在供热中应用越来越广泛,而对其的研究却很少。针对这一现状,本文借鉴石油化工、机械等领域三通研究思想,利用ANSYS有限元模拟的方法,分析了三通特别是压制三通在内压、温度载荷作用下应力的变化规律。本文所做的工作简述如下:第一章从集中供热到直埋管道再到供热三通,详细叙述了本文的选题大背景和目前研究状态,基于课题的研究意义,简要阐述了论文的研究方法和内容。第二章理论分析了供热直埋管道受到的各种荷载,而不同的载荷会产生不同的应力,并对应力可能导致的管道失效方式进行了分类,明确指出三通的主要失效方式是塑性变形和低循环疲劳破坏。第三章在简单介绍三通的基础上,说明了焊制三通与压制三通的加工工艺,并对比两者的优缺点指明压制三通优于焊制三通。最后给出了一种新型三通加工工艺。第四章主要针对三通的两种失效形式,分析比较了国内外对于三通无限塑性变形与低循环疲劳破坏的应力计算方法,推导总结了国内外直管与三通壁厚的计算方法。介绍了欧洲规程的帕尔姆格林—米纳公式以及S—N曲线,并计算出三通临界应力大小,从而可以判断出不同等级要求下的三通是否满足低循环疲劳破坏的安全性要求。并在给出三通施工做法的基础上,分析了三通加固方法与理论。第五章利用ANSYS有限元软件,通过对三通特别是压制三通模型施加压力载荷、温度荷载,得到本文的研究成果:(1)仅在压力载荷下,首先模拟得到了在应力集中区域三条关键路径上的应力分布规律,发现焊制三通最大当量应力点位于肩部内壁,而压制三通随着转角半径的增大,最大当量应力点有从肩部到腹部两侧移动的趋势;发现造成应力集中的主要因素是环向应力,而轴向应力的作用较小;得到了焊制三通应力集中区最大最小当量应力值的比值及压制三通与焊制三通最大当量应力值的比值;得到了压制三通随着转角半径、局部壁厚变化时,最大当量应力值的变化规律等。(2)在压力与温度载荷同时作用下,模拟得到了在应力集中区域三条关键路径上的应力分布规律,发现焊制三通最大当量应力点位于腹部内壁,而压制三通随着转角半径的增大,最大当量应力点有从腹部到肩部两侧移动的趋势;发现造成应力集中的主要因素是轴向应力,而径向应力的作用较小;得到了压制三通与焊制三通最大当量应力值的比值;得到了压制三通随着转角半径、局部壁厚、支管长度变化时,最大当量应力值的变化规律等。(3)模拟发现三通在压力载荷与温度载荷单独作用的应力值叠加起来等于两种载荷同时作用下得到的应力值,能很好满足叠加原理;压力载荷与温度载荷相比,温度载荷是主要因素,压力载荷是非常次要的因素。(4)发现在压力与温度载荷作用下,三通腹部发生了鼓胀变形,而肩部则是内塌变形。(5)通过模拟发现垂直引分支优于平行引分支与跨越三通;且模拟分析了焊制三通披肩加强与肋板加强及压制三通肋板加强的效果。(6)对弹塑性分析进行了有限研究,得出了不同于线性分析的结论。第六章归纳本文的研究成果,总结本文的不足之处,提出三通今后的研究方向。
其他文献
轴承是一种被广泛应用于各个领域的机械支承,尤其在轮轴中应用的特别广泛。它的性能是影响旋转机械动力学特性的重要因素之一。当轴承发生故障时,在其运动过程中滚珠就会与故障外圈或内圈发生碰撞。在机械设备中,间隙也常常存在于设备的零件中,在外激力的影响下,部件之间会产生摩擦、磕碰,更严重的会导致设备的损坏。这就会对工作人员的操作安全产生威胁,甚至会对设备的耐久产生影响。因此,对碰撞问题的研究就显得尤为重要,
孤立子理论是非线性科学的一个重要方向,它既反映一类非常稳定的自然现象,另一方面,这一理论又为非线性偏微分方程提供了求显式解的方法,因而受到物理学家和数学家的重视。本
目前国内对于整个规划体系的研究更多的关注于规划的编制部分,对于规划实施的研究,尤其是镇规划建设用地的研究相对较少,而规划的实施往往决定整个规划最后能否合理实现,对于
随着小口径非球面光学元件的广泛应用,其加工方式成为了精密加工领域的重点研究内容。精密磨削是有效实现硬脆材料的光学元件加工的主要方式之一,可以显著提高表面质量和精度
作为一种金属氧化物半导体材料,ZnO(氧化锌)的禁带宽度为3.37 eV,激子结合能为60 meV,远高于其他宽禁带半导体材料,在光电器件领域中具有广泛的应用前景,可应用于发光材料、光催化剂、太阳能电池以及光电探测器等。目前,研究人员采用不同的合成方法制备ZnO薄膜,并对ZnO薄膜掺杂不同元素,实现对ZnO薄膜光电性能的调控。本文通过简单的水热合成方法制备ZnO纳米棒阵列膜,并以醋酸镍为Ni源,对
随着旋转机械朝着大型化、复杂化和自动化的方向发展,对其核心部件转子系统的研究也显的更加重要。在电机拖动的转子系统中,机电耦合作用对转子系统工作性能和寿命有不可忽略
有机半导体由于具有成本低、可利用溶液法加工和可弯曲等优点,其在柔性电子产品中具有巨大的应用前景。在过去几十年中,尽管有机半导体的电学性能有了显著的提升,但是对有机半导体电荷输运机理的理解仍然缺乏。在本论文中,我们制备了高质量的有机小分子单晶和有机半导体聚合物,用它们来研究有机材料的本征输运性质和电荷掺杂对其电学性质的影响。通过对这些材料电学性能的详细研究,我们对有机半导体的电荷输运机制提出了新的见
切削加工在机械制造行业中发挥着举足轻重的作用,被广泛应用于航空航天、汽车以及模具制造等领域,不断促进机械制造业的发展。但在加工钛合金此类难加工材料时,刀具快速磨损失效仍是切削加工中亟待解决的问题。近些年,随着表面微织构技术的不断发展,在刀具表面置入合理的表面微织构已被证实具有改善刀具切削性能的作用。此外,研究学者发现,添加了纳米颗粒的润滑液能够进一步提高润滑液的润滑性能,该种方法为润滑领域的推广提
扶贫减困是我国自成立至今一直不变的主题,在互联网基础上建立的精准扶贫信息服务平台可以让实践者更好的贯彻落实党中央的政策,让帮扶管理程序更加精准。本文以我国第一家将“互联网+扶贫+公益+金融”糅合在一起的精准扶贫信息服务平台“公益山西”为研究对象,采用网络与实地相结合的调研方式,对山西省精准扶贫信息服务平台的现状以及平台的用户使用情况分别进行调研,分析发现“公益山西”服务层次不高、缺乏监督反馈机制、
迄今为止,纳米加工技术的进步推动了微纳光学天线获得进一步的深入研究。通过光学天线可在微/纳米尺度上实现电磁波包括雷达波和光波的快速共振性响应和调控,为纳米特征尺寸的光波感应、操控和输运提供可行途径,已显示出广泛的潜在应用前景。聚焦离子束扫描电子显微镜系统(FIB-SEM),以其束能大、加工精度和效率高、微纳光学结构的制备工艺相对简化等特征,在制作微纳光学天线方面显示独特优势。考虑到现有FIB-SE