随机稳定,随机吸引和同异宿环分支

来源 :华东师范大学 | 被引量 : 1次 | 上传用户:lxl_0598
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究带有可加噪声扰动的随机微分方程的稳定性问题,随机吸引子的存在性问题以及同异宿轨道分支问题.全文内容共分两部分.  在第一部分,首先考虑了可失掉免疫力的随机SIRS模型和带有分布时滞的随机SIRS模型.在SIRS人口模型中,γ代表康复人群失掉免疫力的比率.对于γ=0的情况,文章中已有研究.本文得到了可失掉免疫力的随机SIRS模型的随机稳定性条件.对于不含有时滞的SIRS系统,我们的条件0<β<λ+μ-(σ2)/2推广了文献中对γ=0的已有结果.我们采用待定Lyapunov泛函的方法得到理论结果.在此基础上,我们进行了三组数值模拟,模拟结果证实了理论结果的可靠性,同时我们猜测免疫能力丧失与否,不会改变疾病消失平衡点稳定的临界值.其次,研究了定义在整个Rn上的带有可加噪声的随机Ginzburg-Landau方程,证明了当√3k≥|β|时,由带有可加噪声的随机Ginzburg-Landau方程定义的随机动力系统Φ在L2(Rn)上有唯一的D-随机吸引子.考虑到无界区域上Sobolev嵌入的紧性不再成立,通常的方法就不再能够保证解算子Φ是一个紧算子,从而给吸引子存在性的判断带来了很大的挑战.在确定性方程中,克服这个困难我们可以采用能量方程的办法.然而对于定义在无界区域上的随机吸引子存在性的判断,一直以来没有找到有效解决的办法.本文通过尾数估计的办法首先得到解算子Φ的渐进紧性,再加上Φ存在闭的随机吸引集,从而证明了随机吸引子的存在性.  论文第二部分,我们分别研究了带有倾斜翻转的3D同宿轨道分支,扭曲双同宿环分支和带有轨道翻转的异维环分支问题.在这部分,我们研究光滑系统z=f(z)+g(z,μ)(1),及其未扰动系统z=f(z)(2),其中z∈Rm+n+2,m≥0,n≥0,m+n>0,μ∈Rl,l≥2,0≤||μ||<<1,g(z,0)=0.||·||代表Rl空间中由内积定义的模.我们采用了局部活动坐标架的方法.考虑到稳定叶层和不稳定叶层在同宿环小邻域内的动力学行为中扮演着强势的关键角色.因此,在一次近似的意义下,由稳定流形和不稳定流形沿同宿或异宿轨道组成的切向量丛,充分保留并展示了同宿轨道附近的动力学性质,如几何不变性,翻转性,扭曲性,扩张性和压缩性等.因此,巧妙的选取沿着同异宿轨道的切向量丛及其补空间丛中的向量丛组成活动坐标架,不仅可以将系统化为较为简单的形式,而且由此得到的Poincare映射和分支方程中的关键参数具有明确的几何和动力学意义.首先研究带有倾斜翻转的非共振3D同宿环分支.即,m=0,n=1,l=2,f(0)=0.系统(2)的线性变分系统及其伴随系统分别为z=Df(r(t))z,(3)z=-(Df(r(t)))*z.(4)令r(t)=(rx(t),ry(t),rv(t)).取T>0充分大,使得r(-T)=(δ,0,0),r(T)=(0,δ,δv),其中|δv|=o(δ),δ充分小,满足{(x,y,v):|x|,|y|,|v|<2δ}∈U.则系统(3)有一个基解矩阵Z(t)满足相关等式,其中|ω23|<<1,ω21<0,ω11≠0,ω32≠0.系统(4)有一个基解矩阵Φ(t)=(Z-1(t))*,其中Φ(t)=(Φ1(t),Φ2(t),Φ3(t)).记Mj=∫(-T,T)(Φj(t))*gμ(r(t),0)dt,j=1,3.我们首先考虑不存在强倾斜翻转的同宿环分支,即ω33≠0.这种情况下,分支结果是唯一的,即系统(1)或者保存原来的同宿轨道,或者分支出唯一的周期轨.其次,在强倾斜翻转的情况下,即当ω33=0时,我们同样得到分支结果是唯一的,即对于系统(1)来说,或者同宿轨道保存,或者分支出唯一的周期轨.最后,我们考虑带有强倾斜翻转的’弱型’同宿轨分支,即当ω33=0,δv=0时.我们得到了1-同宿轨分支曲面,2重周期轨分支曲面及周期为2n-1的周期轨道发生周期加倍的倍周期分支曲面P2n以及任意的2n-同宿分支曲面H2n的存在性,任意 n∈N.同时,为了更好的说明我们的分支结果,我们给出了完整的分支图.其次,研究余维为2的扭曲双同宿环分支.考虑Cr系统,同时m≥0,n≥0,m+n>0,1≥2,f(0)=0.与前面带有倾斜翻转的3D同宿环分支不同的是,未扰动向量场(2)的退化性只来自双同宿环本身.在其中一条轨道发生扭曲时,我们得到了1-1双同宿轨道,2-1双同宿轨道,2-1右同宿轨道,1-1大同宿轨道,2-1大同宿轨道和2-1大周期轨道的存在和唯一性.在两条同宿轨道均发生扭曲时,我们得到了1-1双同宿轨道,1-2双同宿轨道,2-1双同宿轨道,2-2双同宿轨道,2-1大同宿轨道,1-2大同宿轨道,2-2大同宿轨道,2-2右同宿轨道,2-2大同宿轨道,2-2左同宿轨道和2-2大周期轨道的存在性和不存在性.此处,右(或者左)指相应的轨道围绕Γ1(或者Γ2)转的时间为无穷大,而在另一条同宿轨道小邻域内转的时间为有限的.大轨道指围绕整个双同宿环Γ=Γ1∪Γ2且在其小邻域内的轨道.p-q轨道指该轨道在Γ=Γ1∪Γ2得小邻域内围绕Γ1转p圈,围绕Γ2转q圈.同时,我们给出了具体的分支曲面及其存在区域.并在由前两个Melnikov向量组成的2维子空间上画出了各种分支集.  最后,研究带有轨道翻转的异维环分支.关于异维环的课题研究,是极具挑战性和难度的一个课题,这主要体现在:等维的异宿环的连接轨道的余维数是均匀分布的(一般为1),而异维环的连接轨道的余维数是非均匀分布,甚至是集中分布的,并由此导致了分支方程的强退化性.设z∈R4,μ∈Rl,l≥2,且未扰系统(2)有两个奇点p1,p2,即f(pi)=0,g(pi,μ)=0,i=1,2.我们考虑带有轨道翻转的异维环分支,给出了同宿轨道,异宿轨道和周期轨道的存在性,唯一性和不存在性.同时,我们也给出了同宿轨道和周期轨道共存的条件.而保存下来的异维环和周期轨道不能共存,分支出来的同宿环和保存下来的异维环也不可能共存.此外,计算出了2重周期轨和3重周期轨的分支曲而.综合这些分支分析,确立了各种分支曲而及其存在区域.
其他文献
施图姆-刘维尔问题作为解决波动方程和热传导方程等数学物理方程定解问题的基础,其应用已广泛涉及数学物理、地球物理、量子力学等许多领域。特别是在量子力学中,它是描述微观
本文构造了高秩的Virasoro-like代数L的一族模Fā(V),然后给出这些模同构的充要条件,最后确定了Fā(V)的子模和商模。  
给定一个图G和一个集合DV(G),我们定义N_r[x]={x_i∈V(G):d(x,x_i)≤r},其中d(x,y)表示x和y在图G上的距离.令D_r(x)=N_r[x]∩D.若D满足:(1)对于图G的每一个点x,D_r(x)≠0;(2)
期权定价问题是金融数学的核心问题之一,长期以来一直受到学者们的重视,因此它的发展也是相当迅速的。本文所研究的对象——汇率联动期权也是近年来所产生的新型期权,它是随着全
本文主要讨论两类非线性随机二元算子的随机不动点问题,首先,利用锥理论和非对称迭代技巧,讨论了不具有紧性条件的随机混合单调算子方程的随机不动点的存在唯一性,并给出了迭
论文引入了具有随机区间值收益的证劵市场。在该市场中,证券价格(或收益率)被描述为区间值随机变量,在单时期市场背景下,证券的价格表现为区间值矩阵。在经典随机金融分析中,证券
本篇论文主要借助于整数环上的一般线性群的Weyl模的一些性质,利用拉直原理来研究整数环上的一般线性李代数的模之间的扩张问题,得出对于任意两个gl2(Z)模Kλ和Kμ,其中λ=(λ1,
本文给出了q-Hahn多项式的一些新的发生函数表达式,并给出了两种不同的方法进行证明一种证明运用了齐次微分算子方法,各式的证明相互独立.另一种证明方法是在得出一个表达式的
非线性算子的不动点理论是非线性泛函分析的重要组成部分,尤其是非线性算子族的公共不动点问题已成为近年来这个方向研究的活跃课题.  本文主要研究了交换型自映象、弱交换