论文部分内容阅读
抽水蓄能电站作为目前高效的储能方式,迎来了大力发展的机遇。为了追求高水头、大流量、高效率等性能提升,水泵水轮转轮的叶片被设计的狭长且越来越薄,而且水泵水轮机在工作中过渡过程复杂且不同工况间转换迅速频繁,导致核心部件转轮应力、应变增大,并可能引发共振。本文基于流固耦合计算方法研究水泵水轮机在非设计工况下的内部流动及转轮动力学特性,具有重要理论价值和现实意义,主要工作和结论如下:采用CFX和Mechnical软件,湍流模型选取RNG k-ε对6个不同工况点进行单向稳态流固耦合计算,与试验结果对比验证本次计算有效性,并分析发现转轮区域存在诸多二次流,在大流量工况下会使叶片上游部位承受较大剪切力。转轮应力分布最大区域是叶片进口边与上冠交界处,也是最容易受到破坏的部位,经过强度校核,满足实际运行要求。叶片最大变形部位在进口边中部,变形量随流量增大呈微小幅度增加的趋势。针对流固耦合单双向计算方法在高水头水泵水轮机中的应用进行对比探究。采用非定常分析单双向流固耦合计算得到的外特性、内流场以及应力应变后总结出,叶片形变对水泵水轮机性能影响很小,对内流场扰动仅会改变形变较大的叶片进口边局部压力分布。在流体域激振频率分析中,单双向耦合均在流域捕捉到非典型13倍转频流体激振力特征频率,该激励产生位置为转轮无叶区及进口流域,此处存在活动导叶尾缘和叶片前缘分离涡的合并演化。而且40倍转频至60倍转频压力脉动频率幅值相较于单向耦合计算结果也更加突出。基于ANSYS中计算模块获得转轮固有频率,与非稳态流体激励频率比较并计算频率余量,发现在叶片进口边处产生了基频为13倍旋转频率的局部Z向共振,双向流固耦合相同位置测点位移信息也呈现一致的振动规律,同时还存在一些强度不大的高阶共振。由于双向流固耦合还考虑到转轮流道细微形变影响,叶片进口边发生耦合振动,从而导致双向耦合计算幅值结果远大于单向。将非定常双向流固耦合计算获得的载荷历程转换为雨流载荷矩阵,用损伤叠加法进行疲劳寿命计算后,得出高水头水泵水轮机叶片进水边和上冠以及下环的T型连接处是整个转轮最脆弱的部位,而且小流量工况下激振力更加复杂,更容易造成转轮疲劳损伤,同时高应力幅值对转轮的破坏程度要明显大于应力循环次数的影响。