量子通信中两个关键技术研究

来源 :西北大学 | 被引量 : 0次 | 上传用户:emailtoli2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子信息是一门由量子力学与信息学交叉产生的新兴学科,量子通信是量子信息的一个重要内容,量子通信借助量子态进行经典信息的传递,由于量子态的量子特性,量子通信的安全性与通信效率相比于经典通信得到了很大的提高。量子隐形传态与量子密钥分发是量子通信的两大关键技术,量子隐形传态利用量子信道与经典信道完成未知量子态的传输,具有安全高效的应用价值;而量子密钥分发借助量子态进行密钥分发,具有理论上的无条件安全性,大大的提升了通信的安全性,因此量子通信中的关键技术具有一定的研究价值。以下为本文主要工作内容:1、针对目前量子隐形传态协议主要利用某一种特定量子纠缠态传递量子态,使得不同量子隐形传态协议间不兼容,量子隐形传态过程中所使用的量子纠缠态与被传输量子态的施密特秩可能不相等导致投影测量基与幺正变换难建立对应关系的问题,本文提出了基于量子傅里叶变换的利用任意量子纠缠态作为量子信道传输任意量子态的量子隐形传态协议。协议中假设量子纠缠态的施密特秩大于等于被传输的量子态的施密特秩,通过量子傅里叶变换,使通信双方得到合适的投影测量基以及对应的幺正变换,完成量子态的传输;推导出了该协议中投影测量基和对应幺正变换的通式,给出了投影测量基与对应幺正变换的通用对照表;分析了协议的安全性,并与其他量子隐形传态协议进行对比,证明了该协议的适用性。2、针对在实际连续变量量子密钥分发系统中实际器件并不总是完美的,存在的误差可能会影响系统实际安全性能的问题,本文研究了在高斯调制相干态连续变量量子密钥分发系统中,不完美相位调制的出现对连续变量量子密钥分发系统性能的影响。通过分析基于调制噪声模型和信道噪声模型的系统实际性能发现不完美相位调制的产生会降低系统性能,正确判断噪声的来源并选择正确的噪声模型可以被动的提升系统性;设计了判断噪声来源的方法以及两种主动提升系统性能的补偿方案,并分析了两种主动补偿方案的特点以及相应的适用场景。
其他文献
随着无线通信设备的普及,无线通信应用在越来越多的领域中,人们对无线通信的传输速率、传输稳定性、信号传输时延的要求也随之提高,未来物联网领域中也会应用到大量的无线通信技术。现行的5G标准提出了许多移动通信新技术,如大规模多输入多输出(Multiple Input Multiple Output,MIMO)、非正交多址接入、全双工、毫米波传输、端到端通信技术等。其中,毫米波传输技术能够有效缓解无线电波
新应用、新服务呈指数型的增长,计算模式逐渐由云计算转变为边缘计算,将任务迁移至靠近用户端的边缘服务器可以满足移动计算的需求,但任务迁移依赖的网络环境直接影响任务迁移的性能。当今3G、4G、5G和Wi-Fi等网络相互覆盖,异构无线网络成为趋势,使得任务迁移的路径选择和多路径传输成为可能。任务迁移研究中,网络路径的选择对任务时延和终端的能耗有较大的影响。而现有路径选择研究多集中在网络状态本身,而忽略了
作为阵列信号处理中的关键研究课题,波达方向估计在军事和民用领域备受关注,包括导航、声呐、气象观测和雷达目标检测等方面。经典Capon方法通过均匀搜索获取目标的谱峰信息,计算量庞大。后来发展的著名MUSIC高分辨子空间方法,虽然估计精度得到了提高,但仍然是基于谱峰穷尽搜索估计目标方向。同时,MUSIC方法引入特征分解,进一步提升了计算量。要使搜索类方法得到现实应用,降低计算复杂度是提升硬件系统实时性
γ-石墨单炔(γ-GY)作为一种新型二维碳基半导体材料,具备低形成能、高稳定性、大比表面积、丰富孔洞结构等特点,在半导体器件和电路等领域应用前景广阔。目前对于γ-GY的研究工作依旧处于探索阶段,γ-GY的实验制备方法和具体器件领域应用寥寥无几,此前γ-GY的热敏特性和气敏特性也未被实验研究过。本文首次提出了γ-GY的恒温搅拌制备法,并通过实验探究了γ-GY的热敏特性和气敏特性。本文的研究工作将为γ
量子计算是基于量子物理定律的计算机科学研究领域。随着量子计算的快速发展,在一些特定的问题上,量子算法被证明比经典算法更有效,这使得量子计算成为一个很有吸引力的课题。Grover搜索算法作为一种经典的量子算法,它已被证明比任何经典搜索算法都快,经常会被应用于数据库的搜索、复杂方程求解等方面。本文以量子计算和数学理论为基础,对在多解、超比特空间中的搜索问题进行研究。详细内容如下:Grover算法可以在
在现代电子测量系统、生物医疗仪器、声呐信号检测等微弱信号处理领域,对高精度(分辨率>16 bits)ADC的需求非常迫切。由于Σ-ΔADC可以采用高精度的数字信号处理技术、过采样技术和噪声整形技术,通过这些技术能够有效地提高性能从而获得较高的分辨率。作为Σ-ΔADC的重要组成部分,数字抽取滤波器的主要功能是将Σ-ΔADC前端调制器的输出进行抽取与滤波处理,恢复采样信号的原本信息,通常其面积和功耗在
密码学在人类发展过程中一直处于非常重要的地位。从古典密码学中的恺撒密码和反切码等密码方法,到现代密码学中的非对称RSA算法,密码学在日常生活中的应用也越来越广泛,并渗入到经济、军事等各个领域,给国家和人民的生活带来了极高的安全保障。然而,经典密码学基本上都基于数学难题的计算复杂度,无法给出不可破解的安全证明。并且,在量子算法和量子计算机的深入研究下,经典密码学面临着极大的威胁。于是,提出了安全性更
物联网技术靠海量节点感知物理世界,提高人民生活水平,同时使自然环境和人文遗迹得到更好的保护。但数以万计节点同时工作需要消耗巨大的能量,限制了物联网的进一步发展和广泛部署。低功耗广域物联网LPWAN(Low-power Wide-Area Network,LPWAN)技术因具有低功耗,远距离,广覆盖的优势,受到越来越多的瞩目。其中LoRaWAN网络更是因其优越的远距离传输性能和开放性备受推崇。近年来
稀土离子掺杂荧光材料具有高效率、易合成、低成本和稳定性高等优势,被广泛应用于LED白光照明。寻找新型的荧光材料以获得最接近太阳光的白光是现如今研究的主要目标。传统的研究方法是基于大量的实验,在时间和成本上存在很大缺陷。另外,实验也很难对许多现象从底层的物理机制出发给出很好的解释。例如,掺杂浓度对晶体结构和发光性能的影响非常复杂,发射带和发光中心很难确定,能量传递机制无法解释等等。本文从第一性原理计
一些激光束在受到障碍物的影响后,由于光束本身的性质,在后续的传播中障碍物对光束的影响会逐渐减小甚至于消失,学界将光束所具有的这种性质称为自修复特性。经过三十多年的发展,关于光束自修复特性的研究已经成为了激光光场调控、传输及应用这个专题的一个热点,许多学者都对自修复特性的研究作出了贡献。目前,有关光束自修复特性的研究成果已经被成功地应用在了光镊、显微镜、无线光通信等领域。可以预见,激光束自修复特性的