【摘 要】
:
电法勘探是在人工建立的电磁场中,通过观测地下岩(矿)石间所呈现的电磁学性质和电化学性质的差异性进行地质辨识的一种地质勘探方法。电法勘探仪器提供地下勘探信息,物探人员则结合地质资料、岩层构造判断地下矿物质存在的可能性并给出钻井验证的方案。仪器还可为城市工程、地下工程、水利工程等提供科学、可靠的地下构造信息,并作为工程上施工方案的参考资料。传统的时间域激电法存在发射功率大、测点密度稀疏、勘探信息量少、
论文部分内容阅读
电法勘探是在人工建立的电磁场中,通过观测地下岩(矿)石间所呈现的电磁学性质和电化学性质的差异性进行地质辨识的一种地质勘探方法。电法勘探仪器提供地下勘探信息,物探人员则结合地质资料、岩层构造判断地下矿物质存在的可能性并给出钻井验证的方案。仪器还可为城市工程、地下工程、水利工程等提供科学、可靠的地下构造信息,并作为工程上施工方案的参考资料。传统的时间域激电法存在发射功率大、测点密度稀疏、勘探信息量少、抗干扰能力薄弱、分辨率不高等缺陷。本文对国内外的电法仪器性能进行了分析与对比,并结合仪器发展大深度勘探、高分辨率趋势,设计了一款基于全波形采样的抗干扰超高密度电法勘探仪。本仪器将高密度电法中高效率勘探和地质信息丰富的优势与频率域电法中小功率发射(600W)和抗干扰能力强的特点有效结合。一次布极即可实现多种电极排列方式的组合,从而可获得丰富的勘探信息;接收端采用菊花链设计结构,实现勘探信息并行高效率采集;自定义多频发射波形既满足频率域探测需求,又可利用伪随机逆M序列码提高系统辨识度以及抗干扰能力;采用FPGA加ARM双处理器协同工作,提高仪器并行处理能力和工作效率;SDRAM(DDR3)与异步FIFO(First Input First Output)存储器用于缓存并行多通道的采集数据,在长时间勘探过程中,起到优化数据链路传输且不丢失采集数据的作用。论文研究了超高密度电法时频域基本勘探原理,分析了电磁感应耦合效应产生的原因。通过对发射信号抗干扰能力的分析,证明伪随机序列具备相关辨识以及抗干扰能力,且适宜作为电法勘探仪器的发射信号。将伪随机自相关辨识能力与频率域勘探方法结合,自定义了一种多频发射信号。在自定义多频信号的激励下,通过对仪器采集系统特征分析,提出了一种提高勘探深度的方法。该方法结合全波形输入输出采集特点,采用LMS自适应算法和差分递归RLS算法进行采集数据的消噪与信息提取,实现在低信噪比下提取勘探有用信息,从而提高勘探深度。开展了仪器的研发工作,完成了系统硬件电路的设计、PCB设计、硬件调试、软件驱动程序的设计、时序仿真以及板级验证等任务。对仪器进行了发射信号测试、系统本底噪声测试、采集精度及电极切换测试,验证了仪器各项性能指标均已达到预期设定的标准。最后进行了户外勘探实验,通过分析实验勘探数据的频率特性以及观测激发极化效应与电磁耦合效应的分布规律,验证了仪器具备实际应用价值。
其他文献
基于波达方向(DOA,direction of arrival)估计目标定位技术是阵列信号处理研究的重要内容之一,在雷达领域有着广泛的应用。传统的相控阵雷达波束指向在所有距离内都固定在一个角度,存在固有距离模糊性缺点,无法直接从其波束形成输出中估计目标的距离信息。频控阵(FDA,frequency diverse array)雷达与传统相控阵雷达不同,其波束方向图是角度-距离相关的,因此在雷达目标
目前无线体域网(WBAN)应用主要集中在医疗监测、老人监护和军事等方面,而无线体域网研究的基础是人体的电磁特征。故此,本文针对5.8GHz这一ISM频段的胳膊电磁特征展开研究,研究其传输电磁波时的通道特征,具体研究如下:1.真实胳膊电磁模型研究。首先利用3D成像扫描仪对特定个人的胳膊进行扫描,建立起具有真实外形的胳膊模型;然后,根据中国人群的医学生理特点和人体器官各相关的电磁参量,建立具有层状结构
下视线阵三维合成孔径雷达(Synthetic Aperture Radar,SAR)利用阵列天线与目标的相对运动合成二维虚拟面阵,结合脉冲压缩技术,获得空间目标的三维分辨能力。然而,这种基于宽带发射信号的SAR系统硬件设计复杂且接收信号不易分离。通过将频率分集阵列(Frequency Diverse Array,FDA)应用到三维SAR模型中,各阵元只需发射单频信号便可获得宽带观测性能,大大降低系
近些年,中国的对外承包业务展现出蓬勃发展的态势,使建筑业日益成为支撑经济发展的重要产业,既得益于“一带一路”战略的深入实施又得益于新型经济的快速发展。在“十四五”规划中提出以拓展基础设施建设为目标,加快完善公共交通基础设施建设,桥梁作为交通运输工程基础设施的重要组成部分,在规模和数量均呈现上升的趋势,且建造时受诸多不确定性风险因素影响较严重,如建设周期长、规模大、跨度大、受力复杂、所需资金多、施工
随着科技不断进步,在许多科学和工业领域产生了大量的数据。这些数据由多种特征表示,形成了多视图数据。因此处理这类数据的多视图学习逐渐成为深度学习、人工智能、神经网络、大数据等领域的研究热点。多视图聚类是多视图学习领域的研究方向之一,经过多年的研究和发展,虽然已经取得许多成就并且应用到实际生活中,但是也存在一些问题。例如,多视图聚类算法需要通过多视图数据预先构造出一个关系图,多视图数据结构复杂,存在不
低照度环境导致图像成像质量下降,图像噪声较多、对比度较低,用于图像分类、目标识别、图像理解分析、超分辨率重建等图像处理时效果不理想。因此需要对该类图像进行照度增强,即提高图像整体和局部的对比度、去噪,适当调整图像背景和边缘。本文利用变分自编码器作为关键技术针对低照度图像增强进行研究,从不同角度分析低照度图像特点,采用多种技术和手段完善低照度图像的图像结构,提高低照度图像的对比度、丰富细节并降低噪声
深度学习相关技术发展势头迅猛,在交通标志识别领域得到了广泛应用。一方面,传统的交通标志识别模型结构复杂,从头训练花费大量时间。另一方面,虽然迁移学习节约训练时间,但是源模型(教师模型)和其衍生模型(学生模型)具有相似的结构和参数,教师模型的对抗性样本容易被其学生模型分类错误。目前可以利用“指纹”识别法准确找到与学生模型对应的教师模型,如果敌手成功攻击对应的教师模型,投入应用的学生模型的安全会受到严
随着日常生产生活对位置服务的需求不断提升,室内定位逐渐成为目前研究热点之一。超宽带(Ultra-wideband,UWB)定位以其厘米级的定位精度成为室内定位的代表性技术,超宽带的定位精度受到非视距传播、多径效应、基站布设等因素影响,尤其是基站的布设阵型直接影响信号的视距传播(Line of Sight,LOS)和非视距传播(Non-Line of Sight,NLOS)、信号到达时间的测量精度等
随着无线通信技术的发展,航空飞行器集群在军事领域的应用逐渐广泛。集群在空中自发形成的航空自组织组网络(Aeronautical Ad Hoc Networks,AANET),覆盖范围广,组网和拆除速度快,抗毁性能强,能够执行更加复杂的任务。由于环境因素的影响和可用带宽的限制,AANET可靠通信对信道的时延和吞吐量有更严格的要求。现在AANET中使用的媒体接入控制(Media Access Cont
长链非编码RNA(简称lnc RNA)在多种生物调节过程中扮演重要作用。一方面,lnc RNA不同亚细胞定位模式让它们能够执行不同的功能,识别lnc RNA的亚细胞位置有利于确定lnc RNA的功能。另一方面,lnc RNA的突变和失调影响多种人类疾病的发展进程,识别lnc RNA-疾病关联有利于揭示疾病的分子机制和探索治疗策略。然而,确定lnc RNA的亚细胞定位及与疾病的关联的生物学实验成本昂