论文部分内容阅读
目前随着移动支付在我国的飞速发展很多以往的现金交易逐渐被其取代,不同金融机构数据连通和集成等因素为互联网金融的快速发展提供了条件,随着目标用户的不断增多数据量的不断增大,如何高效、准确的进行信用风险控制已经成为影响各大金融机构、互联网平台快速、健康发展的主要因素之一。此外电商平台的发展欺瞒经营、刷单等恶劣行为也影响信用风险评估的正常开展。而金融的本质就在于风控,移动支付的推广和普及为互联网金融提供了数据环境,同时也对互联网金融风控提出了新的场景与新的问题。故而本文在互联网环境下信用风险控制、评估中应用深度学习算法的可行性、实用性进行深入分析和研究并进行了实验验证。本文先从信用风险控制的背景、相关理论方法及其在互联网金融下的面对的新的问题和挑战的介绍开始。在介绍了解目前主要信用风控、评估的各类方法(包括传统基于业务经验的方法、基于统计的方法、基于金融衍生工具的方法以及基于机器学习的方法等)的基础上,进而详细介绍目前在其他一些领域已经展开应用良好效果的几种深度学习算法和框架。传统的控制方法比如专家制度法等需要依赖大量的人工以及行业经验,难以应用在互联网金融中大规模用户群体上。而传统基于统计的方法、衍生工具的方法,对于复杂的非线性问题表现不佳。目前对于机器学习在信用风险控制中也有很多研究和应用,但是对于深度学习在信用风险的研究与应用目前尚未有显著成果本文从介绍深度学习一些基本原理开始,设计基于分布式环境下深度学习实践应用。因此结合目前主流的互联网金融平台的分布式技术环境,对本文所设计系统一些分布式应用技术关键点(包括调用监控系统设计、底层存储以及分布式并行计算框架设计)进行了阐述和分析。基于理论、技术基础本文提出了一个以DBN模型为核心的信用风控原型系统模型设计并对应设计其中各个功能模块(包括数据预处理、特征衍生和选择、清洗与转换以及输出、监控模块和DBN并行计算设计等等)进行阐述和重点设计。最终本文基于国内某互联网金融平台的实际用户数据对本文所设计系统与传统基于规则的风控系统进行了实际对比验证,从而验证深度学习技术在信用风控、评估领域具有较高可行性和实用性。最后在本文所设计系统与比对验证实验效果的总结基础上对深度学习在信用风险控制、评估领域应用的未来以及一些问题进行了展望:比如DBN模型训练过程的一些不足、深度学习技术本身的部分局限性以及单个平台能获得的外部数据有限,各大平台数据的连通还有很长的路要走,打破“数据孤岛”对基于互联网大数据的信用体系构建也是一个至关重要的基础问题。