论文部分内容阅读
CAD与CAE一体化一直以来都是工程分析与科学计算领域研究的重要内容,然而受限于传统数值模拟集成系统中CAD与CAE之间的巨大鸿沟,如CAD几何模型与CAE分析模型表征方式不统一,几何模型在CAE与CAD系统间转换时造成的数据丢失,不同系统之间的频繁交互造成CAE分析自动化程度低等,将CAD与CAE技术进行有机结合以实现数值模拟分析技术的集成化、智能化和自动化是未来工程设计的主要发展趋势。数值模拟技术已成为工程数值计算及机械结构设计和优化中不可或缺的工具,并广泛应用于汽车船舶、航空航天、医疗卫生、生物科技、新能源等多个领域。数值模拟的主要步骤包括几何建模、网格划分、计算求解和后处理等过程,其中前处理过程是数值模拟分析的主要性能瓶颈,其自动化程度严重依赖于用户知识水平和工程实践经验。因此,高效可靠的全自动前处理算法是实现CAD与CAE一体化以及提高数值模拟分析精度和效率的关键。为克服传统数值模拟分析集成系统中CAD与CAE相互独立的固有缺陷,本文以双层插值边界面法为研究背景,将边界积分方程与计算机图形学相结合,系统性地研究了完整实体工程结构分析中的全自动几何模型修复、三维非连续混合体网格生成及体单元细分方法等工作,直接利用CAD实体模型中的边界表征数据实现复杂结构CAE分析自动化。本论文的主要研究工作如下:(1)为真正实现CAD与CAE一体化,以完整实体工程结构分析软件框架为基础,搭建了一个完全融于CAD环境的CAE分析平台,所有数值模拟分析操作均在同一环境下进行,统一了几何模型与分析模型,避免了不同系统之间的数据传递造成的CAD模型几何数据及拓扑信息缺失,实现了CAE与CAD两者的无缝集成。(2)应用双层插值边界面法计算三维位势问题,同时提出了一种新型的数值计算单元——双层插值单元,双层插值单元将传统的连续单元和非连续单元有机统一,提高了插值计算的精度且能够自然地模拟连续物理场和非连续物理场。双层插值边界面法在网格生成过程中允许使用包含悬点的非连续网格,避免使用任何协调过渡模板处理悬点,从而使得网格生成工作具有更大的灵活性,很大程度上降低了网格生成的困难。双层插值边界面法直接利用CAD实体模型中的B-Rep数据进行计算,物理变量计算基于分析模型的参数曲面而不是通过离散单元计算,避免对任何结构在几何上进行简化,为实现CAD/CAE一体化、全自动CAE分析奠定了重要基础。(3)针对几何模型中存在的退化边、退化面、非连续光滑边界及非理想几何特征等常见的几何“噪声”问题,提出了基于T-Spline全自动几何拓扑修复方法,实现了对复杂CAD几何模型中非理想几何特征的自动识别、曲面探测及T-Spline曲面重构的全自动几何拓扑修复。所有操作均为虚操作,不修改原始几何模型,利用新生成的虚边、虚面重构CAD模型的几何拓扑信息,拟合的T-Spline曲线、曲面具有自适应性且能满足拟合精度要求,该方法一定程度上降低了网格生成困难,提高了数值模拟分析的计算精度。(4)针对二维空间直线与NURBS曲线求交、直线与NURBS曲面求交问题,提出了基于仿射算术和区间运算的直线与NURBS曲线/曲面求交方法。与传统的点迭代法相比,该方法由于采用了区间运算,迭代过程不需要给定合适的迭代初始值,具有更好的灵活性;与传统的区间迭代法相比,该方法放宽了对初始区间的要求,采用基于线曲率和面曲率的子域分解方法,可以快速筛选预迭代区间,提高迭代效率。另外,通过运用仿射算术考虑计算过程中数据的相关性,有效弥补了区间算法的局限性,提高了迭代求交的效率。同时,对于直线与复杂三维实体模型的求交问题,研究了直线与三角形面片及直线与空间包围盒快速相交检测算法。(5)为充分发挥双层插值边界面法在网格生成过程中允许使用包含悬点的非连续网格的优势,提出了基于体二叉树的三维非连续混合网格生成方法。该方法采用体二叉树数据结构对任意三维实体模型进行网格自适应细分,在体二叉树细分过程中,基于网格尺寸、表面曲率、实体厚度等几何特征进行自适应细分,避免使用任何协调过渡模板处理悬点。采用“由外向内”的实体模型边界拟合方法对包含几何边界的“锯齿状”网格进行拟合,将相应网格节点依次拟合至几何顶点、几何边和几何面上。对于网格生成过程中存在的低质量网格,采用Laplace优化或单元拓扑分解的方法提高最终网格质量。最终网格生成实现了整体以六面体网格为主,实体边界附近的部分网格以四面体、三棱柱或金字塔网格为辅的非连续混合网格的全自动生成。(6)针对边界元法中核函数为连续或间断的三维奇异及近奇异域积分,提出了基于体二叉树单元细分法的三维奇异及近奇异域积分计算方法。该方法适用于不同类型的体单元,可以精确计算核函数为连续或间断的三维奇异及近奇异域积分。对于不同单元形状和任意源点位置的三维奇异及近奇异域积分,该方法在任意情况下均能保证单元细分的收敛性且细分子单元形状和尺寸良好。经过单元细分后,根据细分子单元与源点位置关系,在体单元内部呈现出远大近小的分布特点,积分点在单元内部更合理地分布,在保证积分效率的同时提高了积分的精度。该方法采用体二叉树数据结构,易于实现,算法具有良好的鲁棒性。