论文部分内容阅读
管壳式换热器广泛应用于我国各个工业生产部门,强化其传热速率可以有效提高能源利用效率,进而缓解能源供需矛盾。本文从数值模拟和实验测量两方面入手,分别就提高管侧和壳侧热流体综合性能,开展管壳式换热器单相强化传热研究,主要研究工作情况如下:(1)采用数值方法从提高综合性能指标和减小熵产(数)两个方面研究一种新型管内插物,即锥形扰流片,层流条件下的强化传热性能。研究表明锥形片内插物可以有效强化管内层流换热,同时流动阻力也有一定幅度增加。与错排锥形片相比,顺排锥形片对管内流体的扰动较强烈,传热速率增加较多,综合性能较好。顺排锥形片强化管各雷诺数平均的Nu数比光管最多强化了4.51倍,平均f因子增加比为2.31-14.77,综合性能指标PEC值在1.17到2.97之间。锥形片内插物结构参数,特别是锥形片张角和间距,对强化管热流体性能影响较大,倾角30°、张角60°、无量纲间隙0.10和片距1.5是本次研究得到的最佳内插物参数组合。熵产计算表明在层流条件下,粘性熵产和传热熵产都随着强化管Re数的增加而加大,后者数值远大于前者,在整个不可逆损失中占有主导地位。锥形片张角较大、无量纲间隙和片距较小时,强化管的熵产较小,不可逆损失较少,从有用能损失最小的角度看综合性能较优。(2)采用实验测量和数值计算两种方法系统研究了一种新型管束支撑元件,即三叶孔支撑板,湍流条件下的壳侧强化传热性能。实验研究表明三叶孔板可以有效强化壳侧传热性能,并得到了三叶孔板换热器壳侧流动、传热性能的试验准则关系式。三叶孔板换热器实验样机在大Re数下传热速率较高,然而它的综合性能随Re数的增加而变坏,壳侧组合参数Nu/△p在16kPa-1~34kPa-1范围之间。数值研究表明三叶孔板形成的射流和强烈回流,可以冲刷管壁,提高流体湍流强度水平,这加速了主流流体混合,同时使边界层厚度减小,最终有效强化了换热管外表面的传热速率。就本文所研究的案例来看,改变三叶孔板板距对壳侧强化传热性能的影响不是很明显,但对流动阻力增加的影响较大。板距较大时,壳侧压力损失较小,因而综合性能较优。四叶孔板换热器壳侧表面传热系数h仅比三叶孔板有少量增加,而压力损失Δp增加却很多,单位压力损失的表面传热系数(h/△p):和单位泵功传热能力(hA/W)分别只有后者的68%和10%。(3)采用数值模拟和实验验证相结合的方法研究花隔板换热器壳侧湍流强化传热性能。数值研究借助多孔介质的概念,引入分布阻力和分布热源,建立了基于空隙率和渗透率的管壳式换热器流动传热性能计算的数值模型。数值模型对花隔板换热器进行了计算,壳侧主要参数的模型预测值与实验值的最大相对误差在14%范围内。本文还利用计算得到的速度温度云图,分析了花隔板强化壳侧传热的物理机制,并与折流板换热器的预测流场温度场进行了比较。折流板换热器虽然表面传热系数较大,但壳侧流动阻力增加更多,壳侧综合性能指标h/Δp只有花隔板换热器的82%。本文创新点主要体现在以下两个方面:(1)从不同角度系统研究了一种新型管内插物(锥形扰流片)和两种新型管束支撑元件(三叶孔支撑板和花隔板)强化传热性能。包括采用不同评价体系(热力学第一定律与第二定律评价方法),应用不同研究方法(数值模拟与实验研究),调查强化元件结构参数的影响,分析强化传热物理机制(场协同角计算与流场-温度场云图分析)等。(2)灵活应用各种CFD建模方法开展强化传热研究,以满足不同对象不同计算工作量和计算精度要求。本文采用的数值建模方法大致包括单元流道方法、流固热耦合方法、周期性模型方法、基于多孔概念的简化方法、UDF(S)、并行计算、批处理、单层和两层k-ε湍流模型等。