【摘 要】
:
随着城市的建设与发展,人们对机动车的需求也随之增长,目前我国汽车保有量已经突破2.2亿辆,汽车使用造成的污染也日益严重。车辆排放污染有尾气和非尾气排放,随着日趋严格的排放标准的颁布实施,非尾气排放已逐渐成为一种非常严重的污染问题。轮胎磨损颗粒物是汽车非尾气排放的重要组成部分,汽车轮胎磨损产生的有害颗粒污染对人体健康的危害可能比汽车尾气污染更大。因此,对汽车行驶过程中轮胎磨损颗粒物的捕集研究具有重要
论文部分内容阅读
随着城市的建设与发展,人们对机动车的需求也随之增长,目前我国汽车保有量已经突破2.2亿辆,汽车使用造成的污染也日益严重。车辆排放污染有尾气和非尾气排放,随着日趋严格的排放标准的颁布实施,非尾气排放已逐渐成为一种非常严重的污染问题。轮胎磨损颗粒物是汽车非尾气排放的重要组成部分,汽车轮胎磨损产生的有害颗粒污染对人体健康的危害可能比汽车尾气污染更大。因此,对汽车行驶过程中轮胎磨损颗粒物的捕集研究具有重要的现实意义。本文以奥迪A6及其标配的205/55 R16型号轮胎为研究对象,将轮胎设置为旋转壁面,构建了汽车-轮胎-地面空气动力学模型。计算了轮胎-轮罩间隙间的风压与风速,并设计实验进行了对比,验证了模型的准确性。其次,对轮胎磨损颗粒物进行非稳态追踪,得到汽车行驶过程中轮胎磨损颗粒物散射的高度、宽度等特性。分析了车轮-轮罩之间的风压特性,得到在轮胎正后部位的车轮-轮罩之间存在风压集中区域,分析不同速度下分压集中区域的上下界线,据此设计颗粒物捕集通道。定量分析了人类呼吸带(高度h=1.5m,距车侧边2m)上的捕集前后磨损颗粒物的浓度。最后,根据风压集中区域,设计了轮胎磨损颗粒物的捕集通道,模拟了汽车在前轮处安设捕集通道、在后轮处安设捕集通道和前后轮处都安设捕集通道三种情况下的15种不同捕集通道方案的捕集效率。分析了捕集通道出入口的压差值,解释了不同方案捕集效率的变化情况。设计了1:10的车辆磨损颗粒物捕集物理装置,设计实验验证了不同捕集通道的捕集效率,发现模拟值与实验值具有较好的一致性。根据得到的最佳捕集方案,研究了车速、颗粒粒径等不同变量下捕集效率的变化情况。本文基于气固两相流理论,采用DPM模型对轮胎磨损颗粒物在汽车行驶过程中运动进行数值模拟,分析了轮胎-轮罩间风压特性,据此设计捕集通道位置方案,研究了不同情况下不同方案的捕集效果。研究可对控制和减少轮胎磨损颗粒物对环境的影响提供理论指导,对建设环境友好型城市具有重要意义。
其他文献
肺癌是目前世界上最严重的恶性肿瘤之一,联合检测癌胚抗原(CEA)和神经特异性烯醇化酶(NSE)可以大幅度的提高肺癌诊断的敏感性与特异性。本研究采用免疫层析法,利用量子点和量子点荧光微球制备免疫探针,结合实验室自行研发的手持式荧光免疫层析芯片分析系统,实现了肺癌肿瘤标志物CEA和NSE的联合定量检测,操作简单,检测快速,成本低廉,是一种理想的肺癌早期快速筛查方法。本文采用碳二亚胺EDC/NHS法分别
癌胚抗原(carcino-embryonic antigen CEA)是一种多糖蛋白复合物,广泛存在于内胚叶起源的消化系统癌中,也存在于正常胚胎的消化管组织中。97%的健康成人血清CEA浓度在2.5ug/L以下,而癌症患者血清中CEA含量会极大地增高;所以测定CEA的含量可以作为恶性肿瘤的鉴别诊断依据,开发配套的快速定量检测CEA的便携式系统就显得十分的重要。本研究基于嵌入式和模块化技术,开发了准
多铁性材料是指具有两种或两种以上基本铁性序(如铁磁性、铁电性、铁弹性和铁环性)的新型功能材料。多铁性蕴含丰富的物理,实现了时间反演对称破缺和空间反演对称破缺共存,在信息科学领域具有重要应用前景,是过去近20年凝聚态与材料物理的前沿热点。本论文以极性亚铁磁体Mn2Mo3O8为研究对象,深入研究其中多重铁性序的共存与耦合,揭示掺杂、外场等方式调控产生的相变等现象与机理。论文内容主要分为以下几个方面:(
随着当今城镇化进程的不断深入,城市居民回归自然、享受精神娱乐的欲望愈来愈强烈,而休闲农业园提供了一个独特的平台。休闲农业作为生态旅游的载体,近几年在我国发展迅速,但整体却出现了“迅猛扩张,低端发展”的问题,因此对休闲农业进行理论研究与实例分析,具有重要意义。本文结合新时代绿色发展、共享、消费的理念对休闲农业进行科学规划,新型生态休闲农业产业具有巨大市场及生态潜力。本文以休闲农业园为主要研究对象,归
汽车在行驶过程中,必然会产生尾气的排放。而在排放的尾气中则有许多污染物能够对环境造成极大的破坏。伴随着县乡车辆的增长以及公路修建的增多,随之而来的则是汽车尾气排放所造成污染物的极速增加,从而导致汽车尾气排放所造成的污染大量增长,机动车排放污染逐渐成为影响环境污染的最大因素。本文以海安市S353部分路段为例,通过实际现场调查,建立CALINE-4模型并对模型进行敏感性因素分析,以一氧化碳(CO)作为
我国高原藏区、西北地区常规能源缺乏、太阳能资源丰富,而且供暖地区与太阳能丰富区高度重合。因此,太阳能供暖是高原藏区、西北地区具有发展潜力的清洁能源技术之一,对缓解当地能源消耗危机、保护脆弱的生态环境具有重要意义。而高原藏区气候极端严酷、低压缺氧,开发高性能、运行稳定可靠的新型太阳能集热器是太阳能供暖在高原藏区、西北地区顺利推广应用的前提之一。本文针对平板型太阳能集热器展开研究,首先分析了平板太阳能
有机电致发光器件(Organic Light-emitting Device,OLED)作为第三代显示技术的核心,已从技术研究阶段进入产品工业化阶段,目前工业化的OLED产品多以真空蒸镀法为主,其高真空和高温的苛刻条件会增加制备的复杂性并降低材料的利用率。同时其大面积制备存在问题,由于在同一层中难以精确地同时沉积几种组分。而溶液法制备OLED具有材料利用率高、加工效率高、与柔性基板兼容性好、易于控
受激布里渊散射(Stimulated Brillouin Scattering,SBS)效应是一种典型的非线性现象,具有低阈值功率,高转换效率,超窄增益线宽等优点。基于SBS效应的布里渊光纤激光器融合了这些优点,目前已在多个领域中得到了应用发展。其中多波长布里渊光纤激光器因为可在一根光纤中同时传输多个光波信号而成为了密集波分复用系统中极具竞争力的光源之一。光纤作为布里渊光纤激光器的增益介质,其组成
撒哈拉沙漠中地表温度最高可达60-70℃,而生存于此的撒哈拉银蚁可将自身体温控制在相对较低的48-51℃。这是由于银蚁身体表面覆盖具有特殊形状的毛发并且毛发表面具有一种特殊的微纳结构,能够起到增强太阳光反射和热辐射的作用,从而降低其体温。本论文受银蚁毛发结构启发,首先在聚二甲基硅氧烷(polydimethylsiloxane,PDMS)薄膜表面制备了银蚁毛发仿生微纳结构,验证了其降温特性。在此基础
滑动磨损会引起较大的塑性变形,在摩擦接触表面形成具有梯度纳米结构的变形组织。这种由于滑动磨损所直接引起的微观结构变化通常会在很大的程度上对金属材料的摩擦学性能产生影响,所以大多数的纯金属和低强度合金得到了广泛的研究。但关于马氏体高强钢在滑动磨损下形成梯度纳米结构的相关研究还有所缺乏,而且梯度纳米结构马氏体高强钢的摩擦磨损性能也需要进行探讨。马氏体高强钢的纳米层片结构在润滑滑动磨损下发生了晶粒粗化现