论文部分内容阅读
高炉风口燃烧带由所有风口回旋区共同组成,是整个高炉生产的热量和能量之源,是高炉稳定操作不可缺少的重要反应区,堪称高炉的“心脏”。高炉风口燃烧带的温度场分布及工作状态直接决定高炉铁水质量的好坏及炉缸煤气流初始分布,进而影响高炉的稳定顺行,对炼铁工业具有极其重要的作用。截止目前还没有有效检测并长期应用于高炉生产现场的高炉燃烧带温度场检测装置,风口燃烧带工作状态的判断仍主要依赖操作人员的简单推断,对于高炉风口燃烧带工作状态的定量化认识急待进一步提高。因此,本文围绕高炉燃烧带温度场检测及应用展开工作,主要研究内容如下:(1)修正了高炉理论燃烧温度模型,对风口前燃烧的焦炭比例及数量通过实时的高炉物料平衡及热平衡计算得出,保证了理论燃烧温度的计算更符合高炉实际的冶炼状态。以上计算结果的变化趋势及范围为计算燃烧带温度及温度检测原型系统设计提供了参考。(2)针对高炉燃烧带内燃烧具有复杂的物理化学反应、在强烈发光发热的有限空间内进行及测试现场背景噪声大、粉尘大、环境恶劣等特点,搭建了高炉燃烧带温度场检测原型系统。基于高炉燃烧带高辐射及所选择硬件设备的特点,采用了比色法温度求解模型计算高炉燃烧带温度场分布。(3)为了提高高炉风口燃烧带温度检测的精度,分别研究了黑体炉标定及拟合、燃烧带辐射有效采集、图像噪声去除及图像边缘检测四个方面。结果表明:在黑体炉标定温度为1500 ℃到2100 ℃范围内对测温系统进行标定,相对误差最大为0.53%;通过控制适合的曝光时间及增益能有效的采集高炉燃烧带的辐射信息;采用小波滤波去噪法处理风口图像噪声效果最好;采用形态学边缘检测法检测不同炉况的风口图像边缘效果最好。(4)将高炉燃烧带温度场检测原型系统应用于某钢铁企业2000 m3及2500m3高炉的风口燃烧带温度场检测,结果表明:燃烧带温度场在空间及时间上分布不均匀,实测得出了不同喷煤状态与全焦冶炼风口温度场变化规律,得出了风口尺寸、喷煤量及风温对风口温度场的影响规律。上述检测结果与前人的研究成果及修正后的高炉理论燃烧温度模型相近,验证了温度检测结果的准确性。(5)提出了评价高炉风口燃烧带各区域及圆周方向均匀性及活跃性的指标。并结合高炉燃烧带实际检测得到的温度场,研究了风口燃烧带各区域及圆周方向的均匀性及活跃性,建立了完整的风口燃烧带工作状态评价体系。研究表明:小容积高炉风口燃烧带活跃性一般比大容积高,但其均匀性低于大容积高炉。