论文部分内容阅读
在剪力墙、核心筒等高层结构中,连梁起着传力以及耗散地震能量的作用,其刚度、强度和延性对结构的抗震性能有重要的影响。在实际结构设计过程中,受洞口尺寸的限制和结构刚度的需求,钢筋混凝土连梁经常出现小跨高比的现象,其名义剪应力较大,易发生脆性破坏。普通配筋混凝土连梁在地震作用下容易发生对角斜拉破坏以及剪切滑移破坏,延性较差,难以满足实际需求;对角斜筋混凝土连梁由于对角斜筋的抗剪效率较高,延性较好,但其存在钢筋配置过多,施工困难等问题,并且对连梁截面宽度要求较高。为了改善小跨高比连梁的受力性能,本文采用工程用水泥基复合材料(Engineered Cementitious Composite,简称ECC)作为连梁基体,其具有高延性、拉伸应变硬化以及多缝开裂的特征。ECC相对于普通混凝土具有更高的受剪承载力,可以减少对角斜筋的用量,斜筋端部可以做成水平状伸入墙肢,易于装配化施工。对8个小跨高比ECC连梁试件和1个混凝土连梁试件进行拟静力试验,通过理论分析、试验研究和数值模拟对ECC连梁的抗震性能以及震后可修复性进行了探究。本文研究工作如下:(1)提出一种预估连梁在地震作用下最大转角需求的计算方法。根据结构的抗震设防烈度、场地类别及设计地震分组得到其对应的位移反应谱,选取12栋剪力墙结构,推导出结构最大层间位移角计算公式。设计了42个剪力墙结构算例,依次变化连梁跨高比及墙肢长度,对其进行大震弹塑性时程分析,结果表明连梁最大转角需求与连梁跨高比存在二次多项式变化关系,与连梁两侧墙肢中心距和连梁跨度的比值呈线性变化关系,提出了连梁在大震下最大转角需求计算公式。选取四栋实际结构对所提的预估公式进行了验证,表明该公式具有较高的计算精度。(2)收集了41根普通配筋混凝土连梁和41根对角斜筋混凝土连梁试验数据,建立小跨高比混凝土连梁剪切试验数据库。采用桁架-拱模型,考虑桁架模型与拱模型的变形协调关系,以及延性对承载力的影响,分别推导出普通配筋混凝土连梁和对角斜筋混凝土连梁的受剪承载力计算公式。基于钢筋混凝土连梁剪切试验数据库,考虑纵筋特征值、箍筋特征值、跨高比以及对角斜筋特征值的影响,推导出连梁破坏转角计算公式。在此基础上,提出了普通配筋混凝土连梁和对角斜筋混凝土连梁的恢复力模型,并进行了验证,为混凝土连梁的抗震性能化设计提供基础。(3)进行了7个对角斜筋ECC连梁、1个普通配筋ECC连梁和1个对角斜筋混凝土连梁试件的拟静力加载试验,试验变化参数为配筋形式,配箍率、对角斜筋配筋率、基体材料、纤维种类以及连梁与墙肢的连接方式,分析了各连梁试件的破坏模式、滞回曲线、位移延性、刚度退化以及耗能能力等抗震性能。试验结果表明随着配箍率及对角斜筋配筋率的提高,连梁的承载力及延性逐渐增大。基体采用ECC可以提高连梁的受剪承载力和延性,减小破坏时的损伤程度,易于震后修复。相对于PVA纤维,采用PE纤维作为基体材料可以提高连梁的强度、刚度、延性及耗能能力,减小对角斜筋用量,利于装配化施工。对角斜筋ECC连梁相对于普通配筋ECC连梁具有更高的承载力、延性及耗能能力。ECC连梁与墙肢采用灌浆套筒连接时,具有同样优异的抗震性能,但需要在连梁与墙肢连接处添加U型筋,以增强连接性能。(4)基于ECC材料特性,修正了MCFT理论中的平均应力应变关系和局部应力平衡方程,当连梁开裂后,考虑了纤维在斜裂缝中的桥接作用。小跨高比连梁的受剪承载力计算需要考虑拱效应影响,考虑桁架模型与拱模型的变形协调关系,推导了普通配筋ECC连梁受剪承载力计算公式。当ECC连梁采用对角斜筋配筋时,基于软化拉-压杆理论,提出一种可以预测对角斜筋ECC连梁恢复力骨架曲线的理论模型。该模型由ECC主拉压杆、对角斜筋和由纵筋以及箍筋组成的次杆组成,可以考虑箍筋对ECC受压性能的影响以及ECC受压和受拉时的软化效应。选取了18个对角斜筋ECC连梁试件,计算结果表明计算骨架曲线和试验结果符合较好。基于建议的理论模型,提出对角斜筋ECC连梁受剪承载力计算公式。基于计算结果,给出了对角斜筋、ECC主拉压杆以及次杆承受的剪力随着连梁跨高比的变化规律。(5)提出了对角斜筋ECC连梁剪切铰恢复力模型,对本文对角斜筋ECC连梁试件的滞回曲线进行了模拟,模拟结果与试验结果符合较好。研究了对角斜筋混凝土连梁、钢连梁、型钢混凝土连梁以及对角斜筋ECC连梁四种不同形式连梁在大震下对剪力墙结构抗震性能的影响。选取40根普通配筋混凝土连梁、40根对角斜筋混凝土连梁、16个对角斜筋ECC连梁以及40片混凝土剪力墙的试验数据,分别建立其对应的试验数据库,基于蒙特卡洛模拟对四种构件的易损性进行了分析,并分别给出了其易损性曲线及不同损伤状态对应的修复措施。基于易损性曲线,对连梁及剪力墙在大震下的损伤状态进行评估,并给出建议修复措施。(6)以FEMA P-58的建筑结构抗震性能评估流程为框架,对剪力墙结构分别采用普通配筋混凝土连梁、对角斜筋混凝土连梁以及对角斜筋ECC连梁的三栋结构进行震后可修复性量化评估。建立三栋结构的性能化模型,对其进行大震弹塑性时程分析,得到其地震响应。采用增量动力(IDA)分析三栋结构的抗倒塌能力,并给出其倒塌易损性曲线。采用性能评估工具PACT软件,对三栋结构震后可恢复能力进行计算并分析。结果表明:损伤主要集中在顶楼和中部楼层,结构采用ECC连梁可以大幅减少修复成本和修复时间,并减少人员伤亡,震后可恢复能力显著增强。(7)提出了对角斜筋ECC连梁基于震后可修复的设计方法。在结构设计时考虑连肢剪力墙进入塑性,根据连梁易损性曲线,在剪力墙结构达到目标位移角时,确保ECC连梁处于可修复状态内。连梁先于墙肢全部屈服,随后墙肢底部发生屈服,采用能量方法求得基底剪力和侧向力分布,并考虑高阶振型的影响。对连梁以及墙肢底部进行塑性设计并配筋,根据配筋结果计算ECC连梁转角能力,当转角需求小于能力时,认为结构设计满足要求。最后选取结构算例对本文建议计算方法的可靠性进行验证。