【摘 要】
:
随着材料科学和工程的发展,具有特定功能的纳米材料在生物化学、光电材料和绿色能源等多个领域展现出独特的应用潜力。功能型纳米材料可以通过乳液法、气相沉积法和分散法等多种方法制备。纳米粒子的形貌和结构决定了材料的性能,但是目前存在尺寸形貌均一性差和不易大规模制备等诸多挑战。微流控技术是在微米级别的反应器进行反应的技术,相较于传统釜式反应器具有微尺度和连续相流动两大特性,因此可以有效提高反应物传热和传质效
【基金项目】
:
国家自然科学基金项目(项目号:51672068); 国家人社部高层次留学人才回国资助项目(项目号:CG2015030001);
论文部分内容阅读
随着材料科学和工程的发展,具有特定功能的纳米材料在生物化学、光电材料和绿色能源等多个领域展现出独特的应用潜力。功能型纳米材料可以通过乳液法、气相沉积法和分散法等多种方法制备。纳米粒子的形貌和结构决定了材料的性能,但是目前存在尺寸形貌均一性差和不易大规模制备等诸多挑战。微流控技术是在微米级别的反应器进行反应的技术,相较于传统釜式反应器具有微尺度和连续相流动两大特性,因此可以有效提高反应物传热和传质效率,加快反应速度,提高产物的均一性,确保对反应过程的精确控制。微流控技术在非均相反应物混合、连续化制备等方面的优势,有利于研究纳米材料的成核和生长过程。因此,微流控技术被认为是纳米材料机理研究和大规模制备的有效平台。在这项工作中,我们研究了微流体反应对半导体纳米晶体的尺寸、形貌和结构可控合成作用,并研究了微流体诱导纳米晶体生长的机理。首先,利用连续流微流控反应装置合成了具有量子限域效应的CsPbBr3纳米线(Nanowires)。优化后的反应温度在50℃左右,合成纳米线时间仅需10分钟。反应动力学研究表明,CsPbBr3纳米线的形成是通过晶核定向诱导和取向附生生长的混合生长机制完成的。微流体的连续定向流动有利于较短的纳米棒的有序排列,并促进其取向附生形成形貌均一、长度可控的纳米线,而传统的搅拌合成法在相同的反应条件下产生大而不规则的纳米棒。本工作不仅为Cs Pb X3纳米线的制备提供了一条新的合成途径,并对Cs Pb X3纳米线的合成和生长机制研究具有一定的指导意义。其次,我们利用了微流体反应控制器合成了CdSe/CdS和CdSe/Zn S核壳异质结量子点,并研究了温度对纳米晶体形貌和带隙的影响。结果表明,随着温度的升高,加速晶体壳层的生长速率,发光峰位逐渐红移。微流控反应器相较于传统的容器搅拌工艺而言,提供的反应“环境”更稳定可控,制备的量子点形貌更有序。同时CdSe/CdS具有较高的荧光量子效率,有助于制备具有较好性能的量子点白光LED。
其他文献
现如今全球水资源匮乏,水资源的处理再利用显得尤为重要,工业领域和生活中均会产生含油废水,含油废水处理问题亟待解决。近年来,用于处理含油废水的超亲水-水下超疏油多孔膜受到广大学者的青睐。聚乙烯-乙烯醇共聚物(EVAL)良好的亲水性和稳定的性质使其成为膜材料的选择之一,普兰尼克(Pluronic)F127亲水性添加剂因其良好的亲水性和致孔剂作用引起广泛关注。基于此,本文旨在通过浸没凝胶法制备超亲水-水
随着我国交通运输体系的迅猛发展,道路养护和修善的问题日益受到关注。阳离子沥青乳液凭借其施工温度低、低VOC、成本低廉和优异的粘结性等优点被广泛应用于道路施工过程中,而决定沥青乳液品质的关键因素是乳化剂。因此,设计、合成新型阳离子沥青乳化剂一直是高性能沥青乳液的研究热点。本文首先合成了一种含有环氧官能团的季铵盐中间体,然后使用该中间体对两种天然生物大分子进行接枝改性,成功制备了两种改性大分子阳离子沥
膜蒸馏(Membrane Distillation,MD)是一种将传统蒸馏方法与膜分离技术相结合的分离技术,在海水淡化、盐溶液浓缩结晶、纯水制备等工艺中具有较大的应用前景。但是潜在的膜污染问题会降低膜蒸馏的通量及效率,其中有机污染物对膜的污染是阻碍膜蒸馏技术在实际生产中应用的重要因素之一。金属有机框架(Metal Organic Frameworks,MOFs)是由无机金属中心与桥联的有机配体通过
有机磷农药作为复杂污染物的代表,在环境中广泛分布且对环境和人类健康危害严重。传统降解方式对反应条件要求苛刻,且单一方式难以彻底降解。作为绿色可持续催化的典型代表,酶催化和光催化在近年来得到了越来越多的关注。但生物酶和普通光催化剂难以回收、成本高昂、对复杂污染物降解效果较差等缺点限制了其广泛应用。本课题通过设计具有光催化能力、性质稳定、生物相容性好的载体,用于有机磷水解酶(OPH)的成功固定化,成功
合成芳胺类化合物主要通过偶联反应进行C-N键的建立,其中Buchwald-Hartwig交叉偶联反应是构建C-N键的重要方法。但是这类偶联反应大部分存在许多缺点,如催化剂用量大、配体结构复杂且较难合成等。虽然已经有许多催化效率高且选择性好的催化体系,但一些催化体系对水和空气等比较敏感因而不利于反应进行。因此制备选择性高、毒性低、能循环使用的催化体系,是C-N偶联反应的发展趋势。本文依Bippy P
从煤焦油中分离的混合二甲酚实用价值有限,通过催化加氢脱烷基方法将其转化为苯酚和甲酚等用途更为广泛的化工产品,是实现二甲酚综合利用的有效方法。微孔沸石具有能发生脱烷基反应的强酸位点,但狭小的孔道限制了反应物与产物的有效扩散,造成二次裂解,使得产物选择性降低。Al-MCM-41分子筛具有较大孔径结构有利于反应物的扩散,提高产物选择性,但其酸性较弱导致催化脱甲基反应活性较低。复合分子筛由两种或多种分子筛
在新零售背景下,无人货架上商品种类繁多、背景复杂且易受光照等外界因素干扰,顾客手持商品时手部或身体也会对商品关键信息形成遮挡,使得自然场景中仅采用图像识别算法在精度和速度上不能满足无人货架应用需求。针对无人货架实际应用场景的特性,本文在深度学习及卷积神经网络框架下,基于人体关节点定位算法与图像分类算法对该场景下的手持商品进行识别。其中人体关节点定位算法能准确定位持有商品手部的相关关节点,而图像分类
近年来,随着石油资源的使用越来越多,资源短缺和环境污染的问题越来越受到社会的重视,使其成为现代社会必须面对的严重问题之一。为了解决能源短缺和环境污染的问题,新能源汽车越来越受人们的青睐。燃料电池混合动力汽车具有零排放、高效率的特点,成为解决上述问题重要思路之一。本研究基于当前重型商用车的发展趋势和节能减排的要求,具体通过分析混合动力公交车的研究进展,确定燃料电池混合动力公交车为研究对象,重点研究整
我国石油、天然气等化石能源多使用长距离运输管道进行运输,对管道运行安全进行有效保护和监测显得尤为重要。现阶段我国常用使用阴极保护技术实现对管道的防腐蚀保护。恒电位仪是管道强制电流阴极保护技术的核心设备,现在市场中存在的恒电位仪存在控制复杂、效率低下、无法实现数据远程通信的问题。本论文应用现代电力电子技术、现代通信技术和嵌入式技术,设计实现一种新型的智能恒电位仪,在完成恒电位仪基本功能的基础上,针对