论文部分内容阅读
葡萄酒酿造由于没有原料(葡萄)清洗和灭菌工艺,葡萄表皮所带各种微生物均会随着葡萄的破碎进入到发酵过程中,特别是醋酸菌作为常见危害菌,能通过自身胞内乙醇脱氢酶(alcohol dehydrogenase,ADH)和乙醛脱氢酶(aldehyde dehydrogenase,ALDH)将酵母代谢的乙醇转换成乙酸,引起葡萄酒挥发酸含量显著升高,导致酒的败坏。传统上,二氧化硫(Sulfur dioxide,SO2)由于其抗菌和抗氧化性能,常被用于预防和抑制葡萄酒生产中的微生物生长。然而,研究表明SO2对醋酸菌的抑制效果并不理想,并且必须保持一定浓度游离态的SO2才有抑制作用,而且过量添加的SO2不仅会影响葡萄酒的质量,还存在一定的食品安全隐患。此外,越来越多的消费者青睐于无化学物质添加的高品质食品。因此,葡萄酒生产中减少SO2的添加量,寻找合适的SO2替代品或替代方法将是葡萄酒工业发展的必然趋势。近年来,脉冲电场技术(Pulsed electric fields,PEF)作为一种新型非热灭菌技术,以其良好的杀菌钝酶效果及能最大程度保持食品的原有品质等特点而受到广泛关注。然而,由于PEF杀菌效率受多种因素(比如处理介质参数和微生物特性)影响,PEF在实际应用于食品杀菌中很难实施“一刀切”的做法,而这些因素对PEF灭活醋酸菌的影响还未见详细报道。此外,截至目前,国内外关于PEF对微生物胞内酶影响的研究还鲜有报道,PEF灭活微生物的潜在机制仍有待充分阐明。因此,本文主要围绕PEF杀灭醋酸菌及钝化其关键产酸酶ADH的机制展开研究,并对PEF处理替代SO2添加实际用于葡萄酒生产中控制葡萄酒中挥发酸含量的效果进行了初步探索。具体的研究结果如下:研究了脉冲电场对醋酸菌的灭活效果及动力学。结果表明:随着电场强度(10~25kV/cm)和脉冲处理时间(1.5~6.0ms)的增加,PEF对醋酸菌的灭活效果增强,最大灭活达3.66 log;且相比于脉冲处理时间,电场强度对醋酸菌的致死效应更为重要。此外,随着初始处理温度(4~42℃)升高,PEF对醋酸菌的灭活效果提高,最大灭活达4.97log。对于葡萄汁和葡萄酒作为处理介质,处理介质电导率越高,PEF对醋酸菌的灭活效果一般较低,同时发现葡萄酒中存在的乙醇和PEF具有协同杀菌效应。处于指数生长期的醋酸菌比处于稳定期的醋酸菌对PEF更为敏感。此外,Weibull数学模型能够较好地反映PEF作用下醋酸菌的失活动力学变化。研究了乙醇诱发醋酸菌对脉冲电场抗性改变的机制。结果表明:乙醇(0%~9%)作为生长底物可以显著抑制醋酸菌的生长。随着培养基中乙醇浓度的增加,生长至稳定期的醋酸菌对PEF的抗性逐渐降低;通过气相色谱-质谱、拉曼光谱和荧光偏振分析结果,并结合PEF对醋酸菌的灭活数据,发现乙醇适应性生长的醋酸菌细胞膜流动性与其对PEF的抗性直接相关。暴露于较高浓度乙醇下,生长至稳定期的醋酸菌细胞膜完整性受损,细胞膜中不饱和脂肪酸含量增加,饱和脂肪酸含量降低;此外,膜脂链中C—C有序度和C—H侧向堆积程度降低,磷脂结构变得更加无序,这些变化导致细胞膜流动性增加,进而使得细胞膜对PEF更敏感。另外,扫描电镜观察结果也表明较高乙醇浓度下培养的醋酸菌细胞经PEF处理后,更容易发生不可逆的电穿孔现象。利用细胞荧光标记与流式细胞仪(FCM)相结合等技术,研究了脉冲电场对醋酸菌细胞膜和胞内酶的影响。结果表明:随着电场强度(0~36kV/cm)的增强,醋酸菌细胞膜完整性受损程度加剧,通透性增加;同时,核酸、蛋白质以及离子等胞内物质泄漏量加大;膜脂链中C—C全反式构象与扭曲构象的比例以及C—H侧向堆积程度增加,细胞膜流动性降低;且扫描电镜观察结果显示PEF处理显著破坏醋酸菌的形态,在36kV/cm的PEF作用下醋酸菌细胞表面出现明显的孔洞。此外,5(6)-羧基荧光素二乙酸酯(CFDA)标记和FCM分析结果表明随着施加的电场强度增强,胞内酶活力旺盛的醋酸菌细胞不断减少。研究了脉冲电场对醋酸菌乙醇脱氢酶活性与结构的影响。结果表明:PEF处理可以显著钝化醋酸菌的ADH活性,且钝化程度随电场强度(0~28kV/cm)和脉冲处理时间(0~4.5ms)的增加而加剧。傅里叶变换红外光谱和圆二色谱分析表明PEF处理后ADH分子的二级结构发生改变;随着PEF电场强度的增加,α-螺旋结构减少,无规则卷曲结构增加。同时,紫外吸收光谱和荧光光谱分析表明PEF处理后ADH的三级结构发生去折叠化,芳香族氨基酸残基所处的微环境发生改变,部分自然发色基团包埋于蛋白质内部疏水区。此外,SDS-PAGE电泳分析表明PEF处理不会改变ADH的多肽链组成,一级结构没有遭到破坏,说明ADH空间构象的改变是PEF钝化醋酸菌ADH活性的原因。研究了葡萄汁的脉冲电场预处理(代替SO2添加)对酒精发酵后葡萄酒挥发酸的控制效果。结果表明:PEF(18kV/cm,4.8ms)处理前后葡萄汁的总糖、总酸、可溶性固形物以及pH没有发生显著变化。相比于SO2添加处理,未发酵葡萄汁的PEF预处理可以促进起酵,加快发酵速度,并显著降低了发酵后葡萄酒中的挥发酸含量(从0.52g/L降到0.23g/L);此外,观察到PEF处理组葡萄酒的酒精含量略微升高,但总酚含量降低了43.32mg/L。