论文部分内容阅读
作物病害是限制农业生产的主要原因之一。通常植物通过两种途径来抵御病害,分别是基础抗性(PTI)和基因对基因抗性(ETI),其中在ETI途径中发挥主要作用的就是抗性基因(R基因),它可以编码产生ETI系统中的免疫受体。利用R基因培育抗性品种是防治作物病害最为直接、环保、有效的手段。大多数的R基因都可以编码含有卷曲螺旋结构、核苷酸结合位点和富含亮氨基酸重复序列(CC-NBS-LRR)结构域的蛋白质。番茄是全世界种植最为广泛的一种经济作物,在果蔬供应中占有至关重要的地位。细菌性斑点病对番茄的生产构成了严重的威胁,深入研究细菌性斑点病的致病机理不仅为改良番茄育种提供了新的线索而且对提高番茄品质起到了重要的指导作用。番茄中的DDB1作为CRL4泛素连结酶复合体的核心成分,通过靶向修饰不同底物蛋白的丰度和活性参与调控多种生物学功能,包括叶绿体发育、果实大小和抗病应答等。前期的研究发现,番茄的DDB1功能缺失突变体hp1表现出对病原菌高敏感性。为了进一步研究DDB1在番茄中的抗病功能,我们以DDB1为诱饵通过酵母双杂交筛选得到了一个番茄的抗性基因SlNBRP1。通过基因表达模式分析和亚细胞定位实验我们得知SlNBRP1在番茄的根、茎、叶、花和果中均有表达,并且定位于细胞质中。通过对SlNBRP1进行生物信息学分析得知它含有抗性蛋白高度保守的CC-NBS结构域。通过免疫共沉淀和酵母双杂交实验进一步证实SlNBRP1与DDB1存在相互作用。通过SlNBRP1的原生质体转化实验我们得知SlNBRP1是受CUL4-DDB1复合体的泛素化调控而降解的。我们推测SlNBRP1可以与DDB1共同参与调控番茄的抗病免疫应答。为了验证抗性蛋白SlNBRP1的功能,我们利用植物基因工程技术,构建植物表达载体pBI121-35S::SlNBRP1,通过农杆菌介导法,将SlNBRP1基因导入野生型番茄基因组中,得到转基因植株。采用Real-time PCR分析转基因植株中SlNBRP1 mRNA的表达情况,结果显示SlNBRP1的表达出现了不同程度的上调和下调,即出现了过表达(Over-expression,OE)和共抑制(Co-suppression,COR)。用Pst DC3000侵染野生型和转基因植株发现,共抑制转基因植株抗病性下降且叶片菌量增加,而过表达株系相较野生型则有较强的抗病性,表明SlNBRP1基因正调控植物对病原菌的免疫反应。本研究为遗传育种改良作物抗病性增加了新的分子靶标。