【摘 要】
:
人口增长和城市化水平的提高不断刺激着建筑需求,大规模的建设带来巨大的资源压力,也对环境保护带来严峻的挑战。兼顾效率和环境友好的装配式建筑日渐成为中国建筑业发展的主流。在国家大力推广信息化、市场化的大背景下,总承包模式和BIM技术的应用,也成为装配式建筑发展的大势所趋。工程计价是装配式建筑发展的重要环节,现行的装配式建筑计价方式以工程量清单计价为主,但由于计价依据不完善、信息化应用不深,装配式建筑造
【基金项目】
:
教育部人文社会科学研究项目《装配式建筑工程量清单与 BIM 的计价信息协同及扩展研究》(19YJAZH026); 住建部软科学研究项目《基于 BIM 的装配式建筑工程量清单计价模式研究》(2019-R-032);
论文部分内容阅读
人口增长和城市化水平的提高不断刺激着建筑需求,大规模的建设带来巨大的资源压力,也对环境保护带来严峻的挑战。兼顾效率和环境友好的装配式建筑日渐成为中国建筑业发展的主流。在国家大力推广信息化、市场化的大背景下,总承包模式和BIM技术的应用,也成为装配式建筑发展的大势所趋。工程计价是装配式建筑发展的重要环节,现行的装配式建筑计价方式以工程量清单计价为主,但由于计价依据不完善、信息化应用不深,装配式建筑造价管理还存在很多漏洞,装配式建筑造价过高也成为横亘在其发展道路上的阻碍。为满足总承包全过程管理的需要和市场化发展的需要,进一步推进装配式建筑信息化的发展,本文提出面向BIM实体量,适应全过程动态计价的装配式建筑计价方法。本文主要围绕装配式混凝土建筑,建立一套计价方法,包括实体量计量和综合单价计价两个部分,满足全过程动态计价要求,配合完成BIM模型“一模到底”的计价方式,解决现阶段装配式建筑计价方法和工程管理发展趋势不协调的问题。本文首先对装配式建筑现阶段计价方式进行解读,提出计价标准不完善、计价方式不适配、信息化程度不高的问题,进而提出基于BIM实体量的计价方式,并且建立计价模型。接着对计价过程中的重点问题,即综合单价如何建立的问题列出框架,建立对于不同阶段不同精度模型计算工程造价的动态计价方式。然后,分析基于BIM的装配式建筑工程分解结构和计价信息结构,建立该计价方法的计价基础。之后对综合单价的构成内容和计算方式深入分析,针对综合单价直接费用、间接费用、利润、税金分解分析,并分别列出计算方法,分析消耗量和价格数据的搜集方式。最后,将BIM模型分别于计价信息、综合单价建立映射关系,使得三方面形成一个整体,能在BIM平台中完成整体计价过程,并且分析该计价方式的运行方法,运用案例说明。本文的研究可行,且进一步打通BIM模型在全过程造价管理应用的路径,助力装配式建筑造价管理的发展。
其他文献
时序数据是按照时间顺序观测某个或某些物理量得到的一串值,其反映了事物属性随着时间变化的特征。时序数据压缩是一个基础且重要的工作。时序数据的压缩不但能够减少空间存储,而且降低了数据传输的成本。本文对时序数据无损压缩展开研究,设计了一种针对时间戳的无损压缩算法以及两种针对时序数据值的无损压缩算法,实现了数据信息无失真情况下的高压缩率压缩。主要工作及创新点如下:(1)提出了e-DoD时间戳压缩算法。该算
蜂窝物联网是互联网的应用拓展,也是新一代通信技术的重要组成之一。物联网、移动互联网和传统互联网每天都会产生海量数据,以满足不同类型的网络服务需求。网络的快速发展需要更低时延更高可靠性连接的支持。边缘计算的提出为网络的发展提供了良好的助力,但边缘计算节点的部署也会引发相应的部署成本的问题。因此,如何在保证网络低时延高可靠连接,并提供多样化服务的条件下,更加高效地部署边缘计算节点,降低部署成本是亟需解
基于书帖标识的图书配帖检测研究利用图像处理技术,从采集的CCD图像中,根据书脊图像中书帖标识的信息,完成检测任务。本文对提高书籍装订质量,提高生产效率和工业自动化程度具有十分重要的工程意义和理论意义。本文将基于书帖标识的图书配帖检测研究分为书帖标识检测、锁线区域分割和图书配帖匹配三个基本环节。(1)书帖标识检测。在非经典感受野机制的启发下,提出了基于三高斯模型的书帖标识检测方法。该方法本质上是一个
依存句法分析是识别句子中词与词之间的语义修饰关系并构建依存句法树的过程。依存句法树能够简洁高效的表达句子的句法结构信息,广泛应用于机器翻译、问答系统等自然语言处理任务中。在对汉语进行依存句法分析时,需要先依次进行分词和词性标注。为解决这种串行分析方式中存在的错误传播和无法共享特征的问题,研究人员提出联合三个任务同时进行分析的方案,如何同时提升三个任务的分析精度一直是汉语依存句法分析研究追求的目标。
图结构能够直观地反映样本点间的关联性,近年来,基于图结构的聚类算法得到了广泛研究。目前已提出的传统算法能较好的利用样本点的图结构信息完成聚类,并表现出卓越的性能,但是其聚类结果对图结构有极强的依赖性。随着深度学习的发展,图深度神经网络被提出,它通过捕捉样本点间的图结构关系,将邻域特征融合后作为该样本点的特征表示,使得所提特征更利于聚类。但是随着图神经网络层数的加深,学习的特征容易出现过平滑的现象,
Tor匿名通信系统具有单向匿名即客户端匿名功能,也可提供双向匿名功能即客户端与服务端同时匿名进行通信。Tor隐藏服务机制就是这种双向匿名的实现方式。隐藏服务有效保护了用户和服务方的隐私,但是也容易被滥用,导致Tor成为了毒品交易、军火买卖等非法活动的“犯罪天堂”。研究Tor隐藏服务的脆弱性,特别是对其真实物理地址的溯源工作,已经成为国内外匿名通信领域的研究热点。Tor隐藏服务基于多跳路由、流量混淆
图像显著性目标检测旨在利用计算机模拟人类的视觉认知机制,快速并准确地定位视觉场景中最具信息量的区域,同时选择性地忽略其他无关区域。该任务作为计算机视觉研究领域中的一个重要分支,广泛应用于诸如机器人识别、背景转换、三维视觉重建等实际场景中,并作为图像识别、图像分类、语义分割等视觉任务的预处理工具,有效地节省了图像处理的时间和空间成本。近年来,深度学习地快速发展使得基于神经网络的RGBD显著性目标检测
目标检测是计算机视觉的重要研究领域,用于判定输入的图像或视频是否含有物体,以及判定物体的类别和位置。近年来,随着深度学习在各个领域展露出性能优势,基于深度学习的目标检测的性能也有了突飞猛进的提升,检测速度越来越快,成为了目标检测的主要方法。因为对抗样本的存在,基于深度学习的目标检测算法的安全性备受关注。对抗样本的存在会在目标检测的应用场景中造成不可估量的后果,尤其是在军事场景中,其错误检测造成后果
全景视频覆盖了360°×180°范围中的场景信息,为用户提供了无死角沉浸式体验,成为目前虚拟现实视频应用的主要内容源。由于全景视频分辨率高,体积大,若直接用于传输,将给网络造成较大压力。考虑到人眼当前视口大小是有限的,为了减少网络带宽消耗,现有的方案主要是基于视口编码及传输,这种方案减少了视频传输时所占带宽,但是在用户切换视口时会带来延迟问题,影响沉浸式体验。本文提出全景视频超分辨率算法以缓解延迟