论文部分内容阅读
八羟基喹啉金属配合物属于有机小分子半导体材料,由于其良好的热稳定性及高荧光量子效率等独特的性质,被广泛应用于有机发光二极管(OLED)等有机电子器件中。有机半导体材料具有较弱的自旋轨道耦合作用和超精细相互作用,自旋弛豫时间极长,在新兴的有机自旋电子学等领域具有极大的潜力。然而,目前实验所测有机材料的自旋扩散长度远低于理论预期,其原因可能在于目前制备的有机自旋电子器件中的有机层多为真空蒸镀或者旋涂的有机半导体薄膜,为非晶或微晶结构,内部存在着大量的缺陷、杂质等,极大的降低了器件的迁移率及自旋扩散长度。为提高有机材料的自旋扩散长度,进而提高有机自旋电子器件的性能,我们提出制备高质量的有机半导体晶体,从而为制备高质量单晶或纳米晶有机自旋电子器件提供材料基础。高质量的有机半导体晶体分子排布有序,结构稳定,具有较高的迁移率和热稳定性,有利于提高器件的性能及研究材料的本征物理性质及本征自旋输运特性。本文选择在具有优异光电性质的有机小分子八羟基喹啉锌及八羟基喹啉铜材料,通过三种不同的方法,物理气相输运(PVT)法、溶液法及退火法,制备出了高质量的微米级有机晶体材料,并研究了其结构及性质。主要研究内容及结果如下:(1)PVT方法,选择高纯氩气作为载气,制备了八羟基喹啉锌晶体。通过X射线衍射、傅里叶红外光谱对晶体的质量及内部分子结构进行了测量,得知其晶体质量良好。通过光致发光谱的测试,我们研究了晶体的光学性能。八羟基喹啉锌晶体的发光峰位于535nm处,属于绿光发光材料。相较于八羟基喹啉锌薄膜,晶体的峰位没有太大的变化。(2)通过对热蒸发镀膜制备的八羟基喹啉锌薄膜在氩气的环境下进行退火处理,发现薄膜发生自组装,生成了八羟基喹啉锌晶体。通过傅里叶红外对其内部结构进行了测试。通过光致发光谱的测试,发现退火后的八羟基喹啉锌发光强度变大。分析原因可能是由于晶体生长过程中,分子内π光强堆积作用、氢键作用等分子间相互作用加强,使得退火后薄膜的发光强度远大于退火前薄膜的发光强度。(3)采用溶液法,制备了八羟基喹啉铜晶体。然后对其形貌、结构以及光学性质进行了深入的分析和研究。选择氯仿作为有机溶剂,配置了三种不同浓度的八羟基喹啉铜溶液。随着氯仿的挥发,八羟基喹啉铜分子自组装,生成六面体晶体。利用傅里叶红外光谱、X射线衍射等方法对八羟基喹啉铜晶体的质量及分子内部结构进行了表征,结合实验数据,我们对其可能的生长机理进行了分析。此外,利用光致发光谱对制备的晶体及200m厚的八羟基喹啉铜薄膜的光学性质进行了测试,并做了对比分析。观察到八羟基喹啉铜的发光区主要位于绿光区域。且晶体在705nm处产生一个新的发光峰。分析原因可能是由三重态到基态的跃迁导致的。此外,还研究了温度对八羟基喹啉铜晶体发光性质的影响。随着温度的升高,八羟基喹啉铜晶体的发光强度变弱,在宽波段处的发光峰存在一定的蓝移。