论文部分内容阅读
近年来随着计算机与网络技术的飞速发展,人们通过PC或者非PC设备接入互联网或无线网络进行流媒体点播服务成为现实。流媒体技术彻底改变了传统的多媒体web服务,它允许用户无需等到整个多媒体文件被完全下载,便可以享受在线的实时的视频点播服务。因此,流媒体技术有着非常光明的应用前景。 网络的异构性、带宽的波动性和各类不同用户的多重服务要求对当前的视频编码技术提出了新的挑战。视频编码后得出的码流必须能够适应网络带宽不断波动的变化,具备一定的抗差错能力,以及能同时提供图像质量、时域、空域及解码复杂度的可分级能力。 可分级视频编码方案是解决Internet流媒体应用中带宽波动的一种有效方法。但是,传统的可分级编码仅能提供粗糙的可分级能力,无法精细地匹配网络带宽的变化。MPEG-4标准中采纳的FGS编码方案可有效地解决精细匹配网络带宽波动问题。不仅如此,采用FGS方案编码后的码流还获得较好的差错复原能力和解码复杂度可分级的能力。但是,FGS获得的所有这些特性都是以牺牲编码效率为代价的。FGS方法的编码效率较低,因为FGS编码中的增强层未使用任何运动补偿的措施来去除原始视频序列在增强层上的时域冗余。 针对FGS编码效率较低的缺点,我们提出了两种在增强层也使用运动补偿的视频编码方案:双环MC+FGS结构编码方案和单环MC+FGS结构编码方案。双环MC+FGS和单环MC+FGS的编码方案虽然在实现结构上借鉴了Mihaela van der Schaar的思想,即使用图像质量更好的增强层图像做参考,通过提高运动补偿的效率来达到提高编码效率的目的,但是本文对此作了重要的改进。在所提出的方案中引入了接收端驱动(receiver-driven)的思想使得能根据网络的可用带宽动态地调整用于重建高质量参考帧所使用位平面的个数,这样不仅可妥善解决上述两种编码结构在低比特率情况下会产生预测漂移的问题,而且还进一步提高了在高比特率情况下的编码效率。对于在无法引入接收端驱动思想的情况下,也对两种结构的FGS增强层中究竟使用多少个位平面来重建高质量的参考提出了解决方案。通过这些重要改进后,使得这两种结构的编码性能产生了质的提高,不但预测漂移的问题得以解决,而且编码效率还得到进一步的改善。 针对时域可分级的SNR FGS,MPEG-4标准中引入了FGST(时域FGS)方案,该方案实现了混合时域/SNR的精细粒度可分级。但是,FGST方案继承了FGS方案编码效率较低的缺陷。因此,我们把MC+FGS与FGST相结合,得到一种MC+FGST结构的编码方案,