论文部分内容阅读
2008年,美国HP实验室宣布首次物理制成了纳米级的第四种基本电路元件——忆阻器。这一重大突破,随即引发了国内外关于忆阻器材料、模型以及应用等方面井喷式的研究热潮。由于忆阻器具有特殊记忆性,其在非易失性存储器、人工神经网络、非线性电路系统等领域均表现出了巨大应用价值。在非线性系统领域,新构建的忆阻型非线性电路系统能产生出保密通信、图像加密时所需要的复杂度高、随机性强的混沌信号,且其效率、安全性以及保密性均比一般的混沌电路系统更高。因而,构建出具有复杂动力学行为的新忆阻混沌系统,具有重要应用价值和现实意义。本文基于不同的忆阻器模型构建出了两个新的忆阻混沌系统,并对新构建的忆阻混沌系统进行了深入的理论分析与研究。基于所构建的系统设计了对应的忆阻混沌电路,并采用硬件电路、DSP硬件平台对系统可行性和物理可实现性进行了实验验证。具体内容概括为如下两个部分:(1)通过引入一个二次磁控忆阻器模型作为经典Liu-Chen系统的反馈项,构建出了一个具有吸引子旋转的四翼忆阻Liu-Chen混沌系统。随后,对系统的相位图、分岔图、吸引盆、Lyapunov指数等进行常规动力学分析,发现这个具有线平衡点的忆阻混沌系统能够随着忆阻器初始值的改变产生出多种状态下共存吸引子旋转的新颖现象,以及其它共存吸引子的暂态转移、持续混沌等复杂动力学行为。接着,对所提出的忆阻混沌系统进行了相应电路的设计、仿真与硬件实验,电路实验结果与数值理论仿真分析结果基本一致。并以该忆阻Liu-Chen混沌系统为研究对象,对系统进行了分数阶化处理,根据有限时间稳定性定理设计出了合理的分数阶控制器,实现了分数阶忆阻Liu-Chen混沌系统的有限时间同步。(2)通过把一个双曲正切忆阻器引入到Holmes型Duffing方程中,得到了一个双曲正切忆阻型Duffing系统。通过分析系统的相位图、转换相图、分岔图等,揭示出了该系统具有目前神经网络中研究较热的簇发现象以及其它丰富动力学行为。例如,通过改变外加激励的频率F可以产生非完全对称的双边簇发、振荡尖峰数目可控的簇发、非完全对称的单边共存簇发、多种周期混沌共存等动力学行为。并通过分岔图及平衡点分析,研究了簇发振荡产生的机理。最后,采用Multisim电路仿真与数字信号处理平台(DSP)对系统进行了硬件实现,其实验结果与理论分析一致,从而验证了系统的可行性和物理可实现性。