论文部分内容阅读
随着我国畜禽养殖业的迅速发展,畜禽养殖废气对大气环境的污染日益严重,虽然有众多学者针对恶臭性气体脱除工艺进行研究和改进,但目前仍存在处理废气种类单一、成本高和二次污染等问题。本文根据畜禽养殖过程中产生的恶臭性气体的成分和特点,结合目前处理这些恶臭性气体技术的优缺点,提出了一种综合处理畜禽养殖废气中氨气、硫化氢、VOCs和颗粒物的新型生物工艺,同时开发了一套一体化生物处理设备。本试验是以猪舍排放恶臭性废气作为处理对象中试试验,并用响应面法设计试验,探究了该工艺的最佳运行参数。在工艺的最佳运行条件下,探究了废气和循环液中污染物的去除效果,并分析其机理,同时就不同反应器内的生物群落进行了分析。研究结论如下:(1)本试验采用了响应面分析方法中的BOX设计法设计试验,并采用了 2因素3水平的编码方式进行设计,建立了 29组试验作为预测模型的数据基础,以此建立了根据处理气体的种类不同,建立了三个模型,并用ANOVA方法来评估其精确性和回归系数的显著性。(2)经过对预测模型的的筛选,选择气体停留时间8.25s,喷淋量2.9L/min为最佳运行参数,为了方便实验操作,取最佳运行气体停留时间为8.5s,喷淋量为3L/min。氨气、硫化氢和VOCs的去除率理论上可以达到 96.5%、94.2%和 71.2%。(3)在选定的最佳工艺运行条件下,在为期10个月的研究期间,氨、硫化氢、VOCs的去除效率分别达到了 96.5%、98.4%、83.0%;(4)氨吸收装置和氨处理装置协同作用,不仅净化了废气中的氨气、颗粒物,同时去除了溶于液相中的有机污染物VOCs,氨氮、亚硝氮和硝氮的处理效率不断提高,最终总氮浓度降低到5mg/L以下,总氮的去除率达到了 89%以上,避免了循环液中总氮的积累。此外,本试验还在一定程度上实现了短程反硝化和硝化反硝化;(5)硫化氢吸收装置和硫化氢处理装置协同作用,实现了硫化氢向硫单质的转化,液相中硫单质浓度达到了 1.4ug/L,并且硫化氢吸收装置中的硫单质浓度有不断增加的趋势。此外,氨吸收装置不仅吸收氨气,同时吸收硫化氢并有将其转化为硫单质的能力,同时硫化氢吸收装置有更强的硫单质转化能力;(6)脱氨模块和脱硫模块协同作用,进一步使循环液中COD浓度降低到了 5mg/L,COD的去除率达到了 90%,液相中出现了环己烷、甲苯、正庚烷、2-己酮、双丙酮醇、四甲基尿素、对二甲苯、四甲基硫脲等物质,首先说明了废气中的有机物确实被吸收转化成了液相中的有机物,其次,液相中没有挥发性的有机酸、醇类、脂类和醛类等物质,而循环液中检测出了生物难降解烷烃、芳香烃类和酮类,证明了挥发性的有机酸、醇类、脂类和醛类等有机物被降解,说了整个系统中微生物对有机物的降解有一定作用。(7)在分析生物群落组分时,发现样本中主要细菌种类(占群落1%以上的细菌)主要有:Chlorobi(绿菌门细菌)、Gemmatimonadetes(芽单胞菌门)、Cyanobacteria(蓝藻)、Saccharibacteria(螺旋菌门)、Acidobacteria(酸杆菌门)、Proteobacteria(变形菌门)、Planctomycetes(浮霉菌门)、Firmicutes(厚壁菌门)、Bacteroidetes(拟杆菌门)和Chloroflexi(绿弯菌)等。这些菌种的出现解释了反应器中污染物降解的原因。