【摘 要】
:
脑的电生理活动信号的采集区域一般位于大脑颅腔内或大脑头皮,采集精度差、信号识别率低是脑机接口(BCI)研究面临的主要挑战。目前BCI的信号采集主要分为侵入式和非侵入式,但侵入式BCI手术风险大,且在术后容易引起免疫反应和愈伤组织。非侵入式BCI因其采用头皮脑电信号(EEG),具有无创性、良好的时间分辨率、便携性和成本较低等特点,已成为BCI技术的研究热点。在非侵入式BCI中,运动想象BCI需要对被
论文部分内容阅读
脑的电生理活动信号的采集区域一般位于大脑颅腔内或大脑头皮,采集精度差、信号识别率低是脑机接口(BCI)研究面临的主要挑战。目前BCI的信号采集主要分为侵入式和非侵入式,但侵入式BCI手术风险大,且在术后容易引起免疫反应和愈伤组织。非侵入式BCI因其采用头皮脑电信号(EEG),具有无创性、良好的时间分辨率、便携性和成本较低等特点,已成为BCI技术的研究热点。在非侵入式BCI中,运动想象BCI需要对被试自身和EEG数据进行大量训练来达到期望值;视觉诱发BCI字符拼写速度远低于自然语言交流的速度,且长时间的中低频率刺激可能会诱发出癫痫。听觉诱发BCI因其无需训练、脑电信号稳定、简单高效的信息传输效率与耐疲劳性强等特点,可有效提升字符的拼写速度,进而提升采集精度和信号识别准确率。本文瞄准国际学术前沿及社会市场需求,对听觉诱发BCI的模型构建与实验范式、EEG识别算法等进行了深入研究,取得的主要研究成果如下:(1)针对传统BCI中被试容易疲劳的问题,结合NeuroSky的TGAM芯片将被试专注度量化为eSense参数,提出基于监督范式的听觉诱发BCI模型,搭建了听觉诱发BCI硬件平台,根据实验过程中被试专注度的eSense值的变化及抛弃数据的比例可得,EEG的采集精度提升了30%左右。(2)针对于以往数据集不考虑专注度的问题,建立基于听觉诱发BCI的EEG数据库,包含数字语音10类、短句20类、长句20类共50类标签。eSense参数值是通过对脑电信号进行放大处理,并滤除噪声与伪迹,再运用eSenseTM专利算法对其运算得到的。(3)依据词或句,分别设计了面向数字语音识别的听觉诱发BCI和面向语句音频识别的听觉诱发BCI。对于数字语音识别,针对长短期记忆神经网络(LSTM)在模型训练时出现的毛刺多、抖动大的问题,结合3个不同隐藏单元的Dense层提出LSTM-tDense算法,最终映射到softmax层输出分类结果,突破了模型收敛慢、抖动大的难题,在识别率上与表现较为良好的门控循环单元网络(GRU)相比取得了5%的提升;对于语句音频识别,针对算法模型出现的过拟合问题,在LSTM输出权重的损失函数中添加惩罚项(L2正则化),提出基于三层Dense的惩罚式长短期记忆神经网络(PLSTM-tDense),在模型识别率上达到94%以上,相比LSTM有20%的提升,有效解决过拟合。
其他文献
作为石油天然气等设备的关键零部件,大直径球阀阀芯使用环境恶劣、产品质量和寿命要求高,传统上采用实心钢坯锻造而成。采用空心坯可实现短流程生产制造、同时可节约钢材、降低能耗,符合国家绿色制造战略发展趋势。研究空心坯锻造球阀阀芯工艺,具有一定的理论和生产指导意义。与实心坯可通过冲孔工艺去除内部冶金缺陷不同,空心坯内部存在的冶金缺陷不可去除,只能通过锻造工艺来解决。因此,空心坯内部的空洞闭合也就成了行业研
国内外大量的学者、专家针对复合板的研究概括起来主要是:不同的工艺参数,工艺方式对轧后板材的组织结构、力学性能、结合强度、复合界面的微观形貌、界面两侧的材料成分和强度硬度规律等的深入研究,相关的成果也应到了生产实践中;针对轧机振动的研究主要集中在四辊、六辊轧机上,从本质上来说,国内外关于轧机振动问题的研究都可以归结到轧机结构与轧制过程的耦合中,即辊缝的变化与轧制工艺参数、力能参数的相互影响、不断激发
随着国民经济快速增长,基础设施、交通枢纽等重点工程蓬勃发展,对处在潮湿环境或侵蚀性介质中的建筑材料防腐要求越来越高,复合钢筋正是在这样的背景下提出的。由不锈钢和普通碳钢组成的复合钢筋,其外层的不锈钢可有效的防止腐蚀,芯部材料是碳钢,可以大量节约Cr、Ni等贵重金属的使用,同时又兼具高强度和良好的塑性。在众多复合钢筋的生产工艺中,热轧被公认为是一种最经济、最环保的一种复合成形工艺。针对复合轧制过程中
大锻件的开裂和变形与淬火过程中流场的分布密不可分,而流场的流量、方向以及介质种类会影响淬火时工件的温度场,进而改变组织场分布,所以无论是哪个环节出问题或者不合理都会造成淬火结果的不理想,对每个环节精准模拟来预测场量信息显得至关重要。对淬火各个环节的模拟也可以降低使用大工件进行试验的成本,优先对合理的工艺进行模拟也能减少废品率,对模拟的调节可以定量预测模拟结果,通过模拟不同参数来提高工艺性能,确定最
近年来人们对能源的需求越来越大,伴随而来的是各种各样的环境问题,人们对可再生能源利用产生了极大兴趣。在光伏发电过程中,光伏电池无法时刻保持均匀光照,当出现不均匀或遮阴时,会导致电池失配和热斑效应。这样会增加光伏电池的损耗,严重时会对其造成不可逆的损坏。光伏阵列受此影响,其输出P-V特性曲线不再呈现单一峰值,而是呈现出多峰,所以最大功率点跟踪算法效果不佳。因此,研究在局部遮阴情况下的MPPT技术具有
随着新能源发电渗透率的提高,电网中元素日益复杂,逐渐出现大规模储能以及充电桩、电动汽车等电力设备。从经济效益和社会效益看,分布式发电都具备较好的效果,但是与单机接入模式相比,在成本方面相对较高,同时系统控制难度较高,需要进行大范围的技术调整和配置,并且对发电技术产生影响。分析DG控制模式,通过深度研究微网在多个运作模式下的控制方式,发现其存在难以实现无功功率分配的精度等问题,因此,本文选择通过多个
随着电力系统中的谐波污染日趋严重化,引起了一股国内外研究和治理谐波的热潮。为了对电网谐波进行选择性补偿,本文侧重于对以下两部分内容的研究:第一,对谐波检测的研究。本文提出了一种基于对偶观测器理论的新型谐波电流检测方法,达到了对特定次谐波检测实时性和准确性的要求,并为传统的谐波检测方法提供了一种新思路;第二,对谐波电流跟踪控制的研究。本文针对谐波电流跟踪控制设计了一种基于多重PR控制的空间电压矢量变
井下矿工工作后,为了除去井下工人衣服上的煤尘,尽量减少煤尘被携带至井上的行人通道及工人生活区域,同时也应避免煤尘进入空气污染环境,因此设计了负压除尘集尘装置,其中除尘系统和集尘系统是重要的两个组成部分,它们的结构会影响装置的工作效果。本文以实体建模为基础,运用计算流体力学软件,并考虑实际情况建立吸尘口、集尘箱以及管道系统的结构模型,导入ICEM中划分网格,然后运用Fluent单相、离散相模型,采用
随着国民经济的飞速发展,为了确保配电系统安全平稳运行,实现电力系统自动化、智能化的发展,对电力物联网的研究显得至关重要。低压断路器作为配电系统各种保护设备中重要的一员,有着举足轻重的地位。同时,在智能电网以及泛在电力物联网的建设过程中,为了顺应电力市场智能服务化趋势,满足用户对智能设备的需求,断路器的智能化研究也显得尤为重要。经过对国内外智能低压设备的研究,本文提出了智能低压断路器设计及运行服务平
随着化石能源的消耗,风能和光能等可再生能源以及电动汽车等新型负载正在迅速发展。为适应各种新型源荷(风、光等可再生能源及电动车等新型负荷)的发展,全球各国针对性提出能源互联网的概念,而能量路由器作为能源互联网的基础设备,肩负着不同形式、等级电压转换以及能量管理的重要任务。因此,多端口能量路由器的研究、分析和设计具有重要的现实意义和应用价值。论文基于五端口能量路由器拓扑结构进行分析,研究了各端口控制策