论文部分内容阅读
绿色交通系统受材料科学、生产工艺以及配套服务设施的限制,很难在短时间内实现真正的普及,使用液体燃料的内燃机在未来几十年在各行各业将继续发挥重要作用。减少内燃机内部摩擦造成的机械损失已成为当下和今后主要攻克的难题之一,给内燃机各组件提供良好的润滑条件是最行之有效的方式,因此研究内燃机内部润滑油膜的输运机理,指导润滑油的开发和内燃机各组件的结构设计在学术上和工程上均有重要意义。在内燃机内部,活塞组与缸套间的摩擦损失占比最高,但活塞组与缸套间润滑油传输过程是一个极其复杂的瞬态过程,给实验研究带来很多困难。数值模拟为活塞组-缸套间润滑油输运过程研究提供了有效手段。在活塞裙部与缸套,活塞环岸以及活塞环与缸套间润滑油的输运过程伴随复杂的多相间相互作用,自由液面演化和润滑油膜的大变形行为,基于雷诺方程的经典润滑理论在计算涉及自由液面演化、外部强制作用下的润滑油膜大变形问题时会遭遇多重解或数值震荡等困难。光滑粒子动力学(SPH)作为一种纯拉格朗日无网格方法,在处理多相间界面移动,自由表面演化以及流体结构大变形等复杂流体问题有独特优势。本文利用Navier-Stokes方程描述润滑油膜的输运过程,首次采用弱可压SPH离散格式对活塞组-缸套间不同部位的润滑油输运过程进行求解。对Couette流动进行计算,与解析解对比验证SPH方法的计算精度。在活塞裙部全油膜润滑能有效降低活塞二阶运动和摩擦损失前提下,将活塞的往复运动简化为正弦移动边界,利用改进后的耦合动力边界条件处理活塞裙部和缸套与润滑油膜的相互作用。系统研究润滑油黏度、发动机转速、活塞往复运动的速度幅值以及活塞与缸套间间隙大小对润滑油输运过程的影响。利用活塞往复运动对润滑油的拖拽效应系统分析了不同油膜厚度下惯性力与粘性力对润滑油输运过程稳定性的影响。为新型润滑油的开发提供了理论基础。构建了普适性更强,系数方程具有最大值与最小值绝对值相等特点的粒子间作用力表面张力模型,结合改进的耦合动力边界构造了粒子间作用力固体表面浸润模型。对控油环和刮环间的活塞环岸结构进行简化,对活塞环岸上润滑油输运过程进行数值计算,结合表面张力、固体表面浸润特性、活塞环岸预先有无润滑油等几个方面对惯性力作用下的润滑油输运过程进行了系统分析。从活塞环岸结构,不同区域润滑油的压力分布、粒子分布等方面详细讨论了表面张力、粘性力、固体表面浸润特性对润滑油流体动力学行为的影响。研究表明SPH方法能有效缓解或避免传统方法在计算该类问题时的数值震荡问题。利用改进的耦合动力边界处理方法构建活塞环与润滑油、缸套与润滑油间的流固耦合模型,在考虑活塞二阶运动的情况下,对活塞环运动引起的润滑油输运过程进行了研究。系统研究了惯性力和粘性力对润滑油分布、压力分布以及速度场分布的影响。详细讨论了润滑油输运过程中涡的移动,润滑油在活塞环周围的的分离、融合以及积聚等流体动力学行为。系统分析了活塞环周围的压力分布、活塞环指定监测点压力随时间的变化,缸套附近的压力变化及其与润滑油粒子分布,自由表面演化间的关系,并对润滑油自由表面演化过程进行了系统分析。研究表明表面张力和润滑油膜惯性力共同作用下的自由表面演化过程和活塞环的拓扑结构对润滑油膜的分布有重要影响,为新型活塞环的研发提供了理论基础。本文为活塞组-缸套间的润滑问题研究提供了一种有效的计算方法,该方法克服了传统计算方法数值震荡和界面追踪的困难。通过研究各部位润滑油的流体动力学行为,可以指导新型机油的研发,为内燃机各组件拓扑优化提供理论依据,为内燃机内部提供更好的润滑条件(更理想的润滑油分布)提供理论指导。