论文部分内容阅读
岩土材料在自然条件下普遍是非均匀的,这种非均匀性对土体的应力应变关系、承载力与变形特性、剪切带的发展有着显著影响。当前的主流理论仍然假设土体在空间中是均匀的,并且很少有本构理论可以同时考虑静动力问题。另外颗粒破碎现象在土体受荷加载过程中也是十分常见的,对于土体应力应变关系的影响不可忽视。另外,在土石坝等实际工程中,大颗粒材料如堆石料等也经常由于高围压下的颗粒破碎而导致应力应变关系变化,进而影响大坝整体的沉降变形。同时有研究表明,颗粒破碎是地震荷载影响坝体变形的重要因素。为了发展一种能有效进行静动力分析并考虑颗粒破碎的本构理论,本文做了如下工作:(1)将Pastor,Zienkiewicz等人提出的广义塑性理论以及后人对这一理论的完善进行ABAQUS软件中的本构程序二次开发,这一程序被用于常规三轴压缩试验、动三轴试验以及土石坝的填筑与地震分析模拟中。通过与试验结果、工程实例结果对比,得到了较好的数值模拟结果,验证了广义塑性模型的正确性,证明了颗粒破碎对应力应变关系以及承载力位移关系有着重要影响,也验证了广义塑性理论可以在同时考虑静动力荷载的条件下保持模型参数的一致性。通过土石坝静动力条件下的分析,进一步揭示了颗粒破碎对沉降变形的影响,同时从填筑层数的角度说明了沉降与分层数量的反相关关系。(2)通过模拟Borja等人的平面应变试验,将考虑了空间非均匀性分布的土体,与常规的均匀性土体同时用广义塑性模型进行平面应变模拟,进一步验证广义塑性模型的正确性。通过对比揭示了非均匀性对于剪切带发展规律以及承载力软化的影响,指出通常认知中的X型剪切带在非均匀性作用下的发展规律;通过使用不同类型的单元进行平面应变模拟,得到单元类型对于非均匀性土体剪切带发展的影响;经过多重比较,确定了C3D20R单元在模拟非均匀性土体剪切带时的优势;通过对模型参数的校正,揭示了颗粒破碎对剪切带数量的影响,也揭示了关键参数对剪切带的控制作用。(3)将广义塑性理论推导至三维Cosserat连续体中,并进行经典连续体、Cosserat连续体下的广义塑性理论单元程序二次开发。广义塑性经典连续体单元更清晰地展现了土体的非均匀性对剪切带的影响,通过划分不同密度的网格,得出经典理论的应变局部化具有网格依赖性的结论,并通过对试样内各点处孔隙比与广义剪应力的分析,得到了造成经典理论承载力软化的原因;通过广义塑性Cosserat连续体的平面应变模拟,证明了Cosserat理论具有克服经典理论导致的应变局部化网格依赖现象的特点,同时承载力位移曲线也保持了高度的一致性没有出现严重的分叉现象。另外,本文提出了一种内部长度参数与平均粒径的关系,沟通了相对破碎率和塑性功,搭建了平均粒径与相对破碎率的桥梁,使得模型可以通过颗粒破碎情况得知平均粒径的变化,进而推导出内部长度参数的变化,实现Cosserat内部长度参数的动态模拟,并赋予一定的真实物理意义,也证明它是控制剪切带宽度的重要因素。