论文部分内容阅读
钛(Ti)与Ti合金具有诸多优异的理化特性,如密度低、比强度高及良好的抗腐蚀能力等,在各类高端领域及日常生活中已得到广泛应用。尤其是在海洋工程与船舶制造行业中,得益于钛合金兼具优异的力学性能与抗腐蚀能力,因此展现出广阔的应用前景。然而传统Ti合金已经很难满足当下日益恶劣的服役环境所提出的苛刻要求。基于海洋用结构材料的性能指标及现有研究结果,合金元素锆(Zr)可以通过合金化的方式显著提升与改善Ti合金的多方面性能。本文以α型TiZrAlB合金为研究对象,通过优化合金成分、调节变形及热处理工艺,开发了新型TiZrAlB合金体系,研究了合金的强韧化机制,揭示了合金中微观组织结构与强韧化及腐蚀行为之间的关联性,促进了新型高强耐蚀结构材料研究工作的发展。在实验室研究阶段,利用真空非自耗电弧炉制备得到一系列成分不同的TiZrAlB合金铸锭。研究发现,Zr的添加使铸态组织得到细化,合金的强度、硬度在固溶强化作用下随Zr含量的增加而增加,而塑性略有下降。经930℃轧制淬火后,部分合金组织中的α相板条晶发生了严重的弯曲与扭折,其余合金中则显示为针状的α′马氏体组织,且强度随组织的细化得到提升,当Zr含量达到40 wt%时,合金展现出本文中最高的屈服强度(1388MPa)、极限抗拉强度(1535MPa)与显微硬度(442HV),同时还保有6.06%的断后延伸率。相比基体合金,强度提升显著。除此之外,与相同成分的铸态合金相比,轧制态合金在塑性几乎不变的情况下,强度大幅得到大幅提升。在工作的中试阶段采用工业化制备手段为优选的Ti-40Zr-4Al-0.005B(质量比)合金设计了不同工艺的加工变形及热处理。实验结果表明,合金片层组织随轧制温度的升高而逐渐细化,同时原始β相晶界密度随之下降,轧制温度为840℃时,淬火的合金试样显示出最高的强度(?0.2=1121MPa,?b=1387MPa),空冷的合金试样由于组织得到回复塑性提升明显。合金在840℃以1×10-3s-1的应变速率进行热模拟实验,合金中检测到了少量β相,该亚稳相的存在是由于在应力载荷下合金组织中位错数量不断增加,为Zr、Al两元素提供了有效的扩散通道,并且环境温度较高、应变速率较慢使合金元素产生偏聚的孕育时间得以保证,同时在合金元素富集区,Zr元素的增加降低了合金相变温度Al元素的增加抑制了马氏体相变的发生,使得合金中保留下少量的β相。另外,合金在冷轧变形后α相板条的生长方向逐渐平行于轧制方向,而晶粒尺寸变化幅度不明显。840℃轧制后的Ti-40Zr-4Al-0.005B合金经不同退火工艺后显示出了丰富的显微组织形貌。根据各类型组织的性能特征及组织与性能间的Hall-Petch关系,细晶网篮组织表现出高强度低塑性的特点,双态组织表现出较为优异综合力学性能,而球化组织则具备适中的强度和较高的塑性,并且合金强度随组织的细化而提升。一系列TiZrAlB合金的全浸与腐蚀失重实验结果显示,合金的腐蚀失重随Zr含量的增加而减小,耐蚀性总体上随Zr含量增加而增强,并且相同成分不同显微组织的铸态与轧制态合金耐蚀性相差不大,合金耐蚀性主要受Zr含量影响。研究发现,虽然Zr元素的添加会使合金腐蚀后出现点蚀的几率增大,但是Zr含量的增加可有效促进合金钝化行为的发生,有利于钝化膜的生成。此外,文中还根据实验内容与结果讨论了TiZrAlB合金的强化机制与腐蚀行为,丰富了钛锆基合金的相关研究,为新型TiZrAlB合金的应用提供了理论基础。