【摘 要】
:
在已经步入信息时代的今天,我们的生活中每时每刻都在产生着不计其数的视频数据。而在安防领域,覆盖城市的监控摄像头网络,每天在保卫着人们的生命与财产安全的同时,也会产生大量的监控视频数据。在发生事故后,监控视频通常是用于还原事故原因、追查嫌疑人的有效法宝。但覆盖整座城市的监控网络,其产生的视频不仅数量巨大,而且并非全部视频都包含有用的信息,在人群稀疏处的监控摄像头可能拍摄的大部分视频都是背景。大量的监
论文部分内容阅读
在已经步入信息时代的今天,我们的生活中每时每刻都在产生着不计其数的视频数据。而在安防领域,覆盖城市的监控摄像头网络,每天在保卫着人们的生命与财产安全的同时,也会产生大量的监控视频数据。在发生事故后,监控视频通常是用于还原事故原因、追查嫌疑人的有效法宝。但覆盖整座城市的监控网络,其产生的视频不仅数量巨大,而且并非全部视频都包含有用的信息,在人群稀疏处的监控摄像头可能拍摄的大部分视频都是背景。大量的监控视频,不仅排查难度高,而且存储压力也很大。对这些视频进行排查,如果使用人工的方式,不仅排查速度慢,还非常消耗人的精力,会造成人力的巨大浪费。为了将人从低效率的工作中解放出来,我们需要尽可能让排查的过程自动化。近些年来深度学习的发展愈发火热,在许多场景中,深度学习都取得了比传统方法更好的效果,在图像和视频检索的领域也有着优秀的表现。对于海量的监控视频场景,有两个目标需要完成。第一个目标是将海量的监控视频中无用的部分丢弃,仅保留包含有用信息的关键视频片段及对应的关键帧图像,减少存储压力,降低检索难度和范围。第二个目标是提取关键帧图像中的行人特征与二进制哈希特征,将其保留进特征库并在需要时通过特征的比较检索目标出现的视频。本文针对海量监控视频的检索展开研究,主要工作如下:(1)针对第一个目标,本文的实现方法是通过自编码网络提取视频帧的特征,比较特征差异,在特征出现较大变化时保存图像作为关键帧,并保存此时间段的视频。当特征不再产生明显变化时,停止视频的保存。本文对提取视频帧特征的自编码网络结构与训练方法进行研究,通过实验确定使网络综合效果最好的损失函数、网络结构以及训练方式。(2)针对第二个目标,本文的实现方法是使用特征提取网络提取关键帧行人目标的特征,使用哈希网络提取行人的二进制哈希特征,并通过多级哈希特征减少检索时的计算量,提高检索速度。本文通过实验确定特征与哈希特征的网络结构与训练方式,相比直接使用网络进行训练,能获得高的效率。同时本文对标准的三元组损失函数进行一些改进,使其在哈希网络的训练中有更优秀的表现。在此之后,本文使用多级哈希特征对图像进行检索,在基本不降低检索效果的情况下拥有更快的检索速度。
其他文献
在物联网的日益发展中传感器技术不可或缺。传感器能够感知外界环境的变化,在越来越多的场景中扮演着人类感官、神经、大脑的角色。热释电红外(PIR)传感器是众所周知的占位探测器,已被广泛用于人体跟踪和目标检测系统。目前,红外传感微系统等传感设备都需要通过电池等外部电源供电。但是,对于一些特殊工作环境,会因为电力系统故障等原因造成传感系统无法正常使用。为了解决在偏远地区或野外环境中难以使用传统电力供电的问
阵列天线是由多个辐射单元排列而成,若其中某些阵元失效将会导致阵列性能下降。为了保持阵列的辐射性能,对阵列进行定期或实时的故障诊断尤为重要。本文以基于辐射远场信息的阵列故障诊断方法为研究课题,从多标签分类的角度建立诊断模型,结合机器学习相关技术,对基于多标签深度学习的阵列故障诊断方法以及基于迁移学习的平面阵诊断网络展开研究。本文的研究内容主要包含以下三个部分。1.现有的基于机器学习的阵列故障诊断方法
随着网络化应用程度的加深,互联网+、大数据等技术的发展迅猛,现代社会也会产生大量多维度多属性的数据,例如医疗图像数据,工业传感器数据,高光谱图像数据等,传统的低维信号已经不能表现这些数据多个属性的内在联系,所以这些具有高维特征的数据集一般都用张量来表示。张量作为向量和矩阵在高阶空间的延伸,是这类数据十分本质的表达。张量奇异值分解(T-SVD)是一种新颖的分解方法,可以通过傅里叶变换把数据从时域搬移
随着社会和科技的不断发展,对于监控视频场景的智能分析系统的需求也不断的上涨。在众多的监控视频分析功能中,对视频中的人员进行定位以及计数是一个重要的研究方向。本文基于深度学习的理论,利用多任务学习的方法设计了一个可用于图像中人员定位以及计数的多任务学习模型,然后结合后处理算法进一步提高系统的精度。本文主要进行了以下的工作:1)对系统应用场景的视频数据做了收集、划分、标注,从图片数据的场景出发,说明了
人工电磁超表面由于其独特的电磁特性而受到人们的关注,其应用范围很广泛,常见于天线、雷达和多种电磁功能器件。在进行电磁超表面设计时,往往需要用到电磁仿真软件对其进行结构建模、仿真计算和参数优化。当结构较为复杂时,这是一件非常耗时的工作。如何对复杂超表面结构进行快速设计,成为了超表面技术研究领域的一个重要课题。近年来,随着人工智能技术的快速发展,一些专家学者引入深度学习的思想,构建神经网络对超表面的结
磁场传感器的应用十分广泛,在国防建设、科学技术、医疗卫生等领域都发挥着十分重要的作用,是传感器产业的一个主要分支。AMR线性磁场传感器因其灵敏度高、工艺简单、易于集成、成本低、噪音小等优点,是应用最为广泛的磁场传感器之一。AMR线性磁场传感器的性能除了受制备工艺的影响,还受几何参数设计的影响。目前国内的研究主要集中在薄膜材料和工艺上,在传感器的尺寸设计方面研究还较少,因此本文主要研究不同的设计参数
太赫兹波位于微波和红外波之间,具有瞬时性、光子能量低、高穿透性等优良特性,可应用于高灵敏度检测、高精度成像和无线通信等领域。由于太赫兹电磁波不会对生物组织产生负面的电离危害且很多生物大分子在太赫兹波段具有较强的集体震荡,可以增强对生物分子检测的灵敏度,随着太赫兹频谱技术的发展,太赫兹波在生物传感方面的研究成为一个重要方向。超材料(metamaterial)是一种具有特殊的物理特性的人工复合电磁材料
三维霍尔传感器是为了满足现代产业的极速发展而出现的。现在的三维霍尔传感器大多由硅材料制成,其具有良好的工艺兼容性,但由于硅材料的载流子迁移率低、禁带宽度窄,基于硅的霍尔传感器的灵敏度较低、温度稳定性较差。GaAs材料的载流子迁移率高、禁带宽度大,用其制备的霍尔传感器具有更高的灵敏度与更好的温度稳定性,并且可以利用GaAs基异质结的高迁移率载流子特性来进一步提升传感器的性能。本文首先对GaAs基异质
在过去的几年时间里,4G的普及推动着移动互联网行业的飞速发展;可以预见在未来的几年时间中,5G的全面铺开也必将会给物联网带来新的发展。随着网速越来越快,人们对信号传输过程中的编译码时延要求也越来越高。近些年深度学习在很多领域已经取得了重大的突破,也越来越多地被应用于各行各业,其“一次训练到处推理”的特点非常适合用来处理信道译码任务。利用深度学习,在神经网络中学习到某种编码的特征,将带有这种特征的模
近年来,视频作为可视媒体数据的重要组成部分深深影响着人们的生活。视频信号在产生、传输过程中常受到噪声的影响,给用户带来不良的视觉体验。视频去噪是提升视频质量的有效手段,并且是视频处理领域的热点研究问题之一。近年来,基于经典信号处理方法的视频去噪已经遇到了技术瓶颈,基于深度学习的去噪方法正成为主流的视频去噪方法。基于深度学习的视频去噪方法虽然带来了去噪性能的显著提升,但仍无法充分利用视频内部的先验信