一类半线性非齐次柯西问题正径向平衡解的稳定性

来源 :华中师范大学 | 被引量 : 0次 | 上传用户:hrf00123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文中,我们先用常微分的方法得到非齐次问题(0.4)的正解的分离性:对于满足一定条件的K(x)和f(x),当p>p<,c>时,解关于初值α有单调性;当n+2+2l/n-2时,任何两个解相交无穷多次.然后运用上下解方法,极值原理,和比较原理得出该文的主要结果:当p>p<,c>时,(0.1)的正径向平衡解关于模‖·‖m+λ<,1>是稳定的,关于模‖·‖m+λ<,2>是弱渐近稳定的.
其他文献
可加回归模型已经被实践证明对分析多维数据是很有用的统计工具.此模型的优点:它的每一个可加成分的被看作一维非参数回归,并有很好的收敛速度.因此这些模型很容易解释每个自
用范畴语言刻划不同类型的子对象是范畴论的一个重要内容.各种单态(monomorphism)就是由此被引入和定义的,而这些单态在不同的拓扑空间范畴中又表现出不同的性质.该文主要讨
Helmholtz方程外问题在科学与工程领域有着广泛的应用前景,尤其是在电磁学、声学等领域.对Helmholtz方程外问题数值解法的研究有利于促进许多重要物理现象的仿真。  区域分
该文将讨论带阻尼的一维粘弹性模型系统的解的渐近行为,给出了相应解收敛到非线性扩散波的衰减率估计.此外,我们还证明了带阻尼的一维粘弹性模型系统是带阻尼的双曲守恒律的
学位
研究和探讨结构矩阵低秩逼近问题是数值代数领域的重要课题之一,它在语音编码、滤波器设计、计算机代数和信号处理等领域中有着重要的应用。本论文主要研究了三类结构矩阵(半
面向目标的误差估计是一种针对特定值作误差分析的新型后验误差估计方法,也是自适应有限元方法的核心步骤。本文的主要研究内容是如何在Poisson-Boltzmann方程(PBE)和Poisson
平面上的最短连线问题在交通运输、道路建设、VLSI设计中有广泛的应用.我们考虑的平面上的最短连线问题是只考虑平面上n个给定点及给定直线,距离为欧氏距离,所有连线构成以这