【摘 要】
:
随着柔性直流输配电技术的发展,多端直流电网是未来智能电网发展的趋势与方向,然而多端直流输电系统,无电流过零点以及较低的电路电感,一旦发生故障,短路电流上升速度快,峰值
论文部分内容阅读
随着柔性直流输配电技术的发展,多端直流电网是未来智能电网发展的趋势与方向,然而多端直流输电系统,无电流过零点以及较低的电路电感,一旦发生故障,短路电流上升速度快,峰值较大,直流断路器作为直流电网控制和保护的关键设备,其快速性是保障成功开断的关键。快速斥力机构具有响应快、精度高的优点,在直流开断领域有着广泛应用,但其能量转换效率及高压长行程驱动等问题成为其主要限制因素。本文首先分析现有快速斥力机构的拓扑结构及工作原理,总结各拓扑结构的优缺点以及适用领域,从结构方面入手,提出高压长行程机构的设计方案,并针对双线圈式斥力机构进行理论分析与磁场分析,发现磁场能量在空气中消耗严重,而磁场密度的大小与介质导磁系数有着密切关系,提出增加导磁材料优化驱动效率的磁场优化方案。其次为设计出一套电磁驱动效率较高的机构,本文基于有限元分析方法建立双线圈结构的电磁斥力机构仿真模型,首先仿真分析线圈匝数、高度、轴向匝数对快速斥力机构动态特性的影响,确定线圈盘的最优参数。然后,为避免磁饱和和功率损耗问题,分别从导磁材料、结构参数等方面对线圈盘骨架进行优化设计,得到了线圈盘导磁部件的最佳设计参数。最后,基于仿真分析优化结果,搭建基于永磁保持的双线圈盘快速斥力机构实验样机和实验测试平台,验证优化方案的可行性。最后提出适合长行程的串联混合式斥力机构(SHRM)的设计思想,基于有限元分析方法建立仿真模型,对比分析串联混合式、线盘式以及螺线管式机构的运动特性,研究串联混合式机构瞬态磁场分布以及机构间的影响规律,初步验证其可行性。然后对串联混合式机构进行结构紧凑型优化设计,提出一种新型混合式斥力机构(NHRM),为高压断路器长行程快速斥力机构的研制提供了参考依据。
其他文献
葡萄霜霉病是葡萄中最严重的真菌病害之一,严重影响着世界各地的葡萄生产。病程相关蛋白(Pathogenesis-related protein,PR)在植物抗病性中起着重要的作用,然而,关于其在葡萄
核能产业具有高效、低碳、环保等一系列优势。由于其诸多优点,近年来核电能源占中国乃至世界电能的比重逐渐升高,据统计2019年中国核电总发电量为3481.31亿千瓦时,约占全国所
航母是大国重器,舰载机架次出动能力是影响航母战斗力的关键因素,而该能力直接决定于航母的舰载机航空保障能力。本文重点研究了舰载机航空保障资源调度问题以及影响因素分析
苏云金芽胞杆菌(Bacillus thuringiensis,Bt)是一种杆状的革兰氏阳性菌,其产生的伴胞晶体蛋白对鳞翅目、鞘翅目、膜翅目和双翅目等昆虫具毒杀活性,Bt制剂是目前应用最为成功
电力是社会发展生产的动力,更是人民正常生活和工作的基础,因地震灾害频发,“地震韧性城乡”理念的重要性日益凸显。虽然国外对于电力系统的韧性已经开始研究,并取得一定成果
沙丁鱼(Sardina pilchardus)与圆沙丁鱼(Sardinella aurita)为毛里塔尼亚专属经济区主要渔获物之一。由于其巨大的资源量以及作为大西洋中上层生态系统中的重要物种,研究毛里塔尼
七叶树(Aesculus chinensis Bge.)又被称为娑罗树,为七叶树科七叶树属落叶乔木,在中国分布广泛。七叶皂苷作为中药娑罗子主要活性成分,具有极高的药用价值,可用于治疗脑出血、脑水肿、呼吸系统疾病等。七叶皂苷是七叶树三萜类合成途径中十分重要的代谢产物,由原七叶皂苷元经多步糖基化和酰基化而形成,后期的修饰直接关联到该化合物的药用活性。特别是酰基转移酶参与的酰基化修饰,催化激活的酰基由供
目的:初步探索低频脉冲超声(Low intensity pulsed ultrasound,LIPUS)对脂多糖(Lipopolysaccharide,LPS)诱导人牙周膜细胞(human periodontal ligament cells,hPDLCs)凋亡与自噬的影响,其分子机制是否与Yes相关蛋白(Yes-associated protein,YAP)有关。方法:1.应用组织块酶消化法分离
规模化储能及电动汽车行业的快速发展需要锂离子电池具有更高的能量密度和循环稳定性。传统的石墨类负极材料比容量低(372 mAh g-1)限制了锂离子电池能量密度的提升。硅基材
植物病原体和真菌的细胞壁中一般都含有大量的几丁质,链霉菌(Streptomyces)是一种几丁质酶高产菌株,除了可以产生大量的几丁质酶外,其产生抗生素的能力在植物病害生物防治的