缺陷铁电体中旋涡畴形成和演化的分子动力学模拟

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:weiruan007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于具有广泛而且优良的功能特性,铁电材料受到人们越来越多的关注。利用这些特性可以设计和制造先进的电子、光电和机电功能器件。与块体材料相比,低维铁电材料具有一些新奇的特性,例如纳米尺度极化旋涡畴构型的形成和演化模式,借此可以拓展许多潜在工程应用。然而,在铁电器件的制备与服役过程中,会不可避免地引入和生成各种物理缺陷,这些缺陷对铁电材料的极化特性会有强烈影响。因此研究含缺陷的纳米铁电薄膜中极化旋涡畴的形成和演化机理具有重要的科学和工程意义。本文采用分子动力学方法,结合壳模型,建立了钙钛矿铁电体缺陷晶胞模型,提出了缺陷晶胞的一种电荷补偿方式,推导了特征物理量的计算公式,研究了在压缩载荷作用下含不同缺陷的铁电薄膜纳米尺度极化畴的构型特征和演化行为,取得的主要创新性成果包括:(1)从三维角度考察了超晶格中极化旋涡畴的形状、尺寸和相互之间的位置关系,以及旋涡之间的相对运动和碰撞湮灭过程,首次观察到长程有序的顺时针-逆时针旋涡阵列在不同的材料层中同时出现的现象。研究结果显示,随着应变的增加,旋涡的位置、形状和尺寸持续发生改变,而且旋涡还可能跨越材料界面;在材料界面或者边界附近,旋涡倾向于以在边界或界面处消失的方式先湮灭;而在材料内部,旋涡则通过向反旋涡运动并与之发生碰撞的方式湮灭。(2)研究了含氧空位的钛酸钡薄膜中极化畴的形成和演化机理,首次观察到氧空位引起的顺时针闭合畴围绕头对头畴的独特畴结构,揭示了氧空位晶格体积分数和位置对极化旋涡畴的影响规律。研究发现,氧空位的增加会导致围绕氧空位的闭合畴的旋转方向逐渐由顺时针向逆时针转变,而氧空位晶格内部的极化畴逐渐由随机构型演变为顺时针旋涡,最后演变成分段条纹多畴结构。对于单个氧空位,本文获得了可以形成各类闭合畴的氧空位位置范围。(3)研究了钛酸钡薄膜中由空洞引起的极化旋涡从萌生到湮灭的全过程,发现空洞可以强化极化旋涡的稳定性。研究结果表明,空洞体积分数的增加会导致旋涡逐渐向从顺时针向逆时针转变并在一定比例下完全反转。本文揭示了空洞的尺寸、形状、取向和位置对极化旋涡畴反转的影响规律,给出了顺时针和逆时针旋涡畴围绕空洞成核的条件。本文的工作证实了通过控制氧空位晶格和空洞的尺寸和位置调控铁电纳米薄膜中极化旋涡畴构型的可行性,可以为设计和开发基于铁电极化旋涡的逻辑存储设备提供理论基础。
其他文献
【目的】抗生素耐药性对全球健康和社会经济发展造成了严重威胁,抗菌药物的不合理使用进一步加剧了耐药形势,基层医疗机构尤为严峻。为了应对相关威胁,促进医生抗菌药物合理处方行为对缓解耐药性危害和保障公众健康至关重要。然而,目前对医生抗菌药物处方行为模式研究仍有不足且影响机制尚不明晰。本研究主要聚焦基层医生,提出以下研究目标:(1)鉴别潜在的抗菌药物处方行为模式,识别需要重点干预的医生群体;(2)开发抗菌
无人机(UAV,Unmanned Aerial Vehicle)作为地面站与机载计算机协同控制并装备多源传感器的自主飞行器,因其机载存储、通信和计算能力成为了新一代移动边缘计算(MEC,Mobile Edge Computing)节点的潜在选择。为了将边缘计算服务通过无人机进一步安全地迁移到离用户更近的地方,针对动态变化的空域环境和网络拓扑,本文就无人机路径规划避障和辅助计算卸载展开了以下几个方面
复杂非均质背景红外图像弱小目标的检测问题是目标识别与检测领域的重要研究方向,在军用和民用领域均有着广泛的应用。复杂云层、海面波浪等非均质背景具有局部区域灰度变化剧烈、无特定形状特征、信噪比低、杂波厚重等特点,是红外小目标检测问题的难点。当前尚没有专门针对特定非均质背景图像进行研究的公开文献,当前主流检测算法在处理非均质背景图像时往往具有虚警率高,检测率低及稳定性差等缺陷,难以满足实际应用的需求。针
本文从企业现金持有水平、高管在职消费、企业并购和投资效率四个角度探讨中央企业集团母公司上缴国有资本收益(也称作“集团母公司强制分红政策”)对集团内上市公司行为产生的影响以及具体的影响机制。现有的研究大多基于国有上市公司的自愿性分红和半强制性分红政策对分配股利的公司本身可能产生的影响,鲜有文献关注集团母公司强制性分红政策可能会基于内部资本市场对集团内成员上市公司行为产生的影响。本文将财政部、国资委于
水电机组作为水电能源转换的核心设备,呈现巨型化和智能化的发展趋势。机组的运行环境恶劣且受水力、机械、电磁等耦合因素的影响,使得设备异常振动、耦合故障、疲劳劣化甚至结构破坏等安全风险日益突出,机组状态维护的研究备受学界关注。在此背景下,本文针对水电机组状态维护中振动信号降噪、故障诊断、趋势预测所面临的关键科学问题,以时频信号分析、群智能优化算法和机器学习等为研究手段,研究提出适用于水电机组振动信号分
石墨烯的巨大成功掀起了其它类似二维(2D)材料的研究热潮。过渡金属硫族化合物(TMDCs)作为2D材料大家族中十分重要的一员,因其独特的物理化学特性,而在光电子、电子、电催化、能源存储与转化以及传感等领域具有广泛的应用前景。因此,TMDCs成为了2D材料中的热点材料,引起了研究者们的巨大关注。深刻理解TMDCs的生长动力学以及微结构演变过程对其在不同领域中优异性能的实现十分重要。原位透射电镜技术是
独特的资源结构决定了我国以火电作为电力供应基石。近年来燃煤电厂常规污染物排放已得到严格控制,痕量重金属污染日益引发全球关注。燃煤电厂是我国环境中硒的主要人为来源,而硒的过量排放对生态环境危害极大,必须高度重视燃煤过程中硒污染问题。利用现有烟气净化装置实现多污染物联合脱除,是目前重金属控制的主要策略。由于硒与硫的相似性,硒污染物在烟气中主要以气态形式存在,湿法烟气脱硫系统成为硒控制的核心设备。但现有
状态估计是电力系统调控中心能量管理系统的核心应用,担负着通过全网各处采集的量测数据准确评估系统运行状态的任务,其所得结果不仅是其他调度自动化应用的输入,也是调控人员合理下发调度指令的参考依据,对保障电力系统安全稳定与经济运行至关重要。随着分布式电源、储能装置等新型电力元件的涌现和电网结构的发展变迁,电力系统不同主体间的协调交互更加频繁,促使非专有信息通信技术逐步在电力调度自动化系统中普及,信息空间
有机无机杂化钙钛矿材料具有吸光系数高、载流子扩散距离长和能带间隙可调等优点,因此以有机无机杂化钙钛矿材料作为吸光层的钙钛矿太阳能电池(perovskite solar cells,PSCs)近年来引起了科研工作者的广泛关注。自2009年问世以来,钙钛矿太阳能电池获得了突飞猛进的发展,其光电转化效率不断攀升。目前,钙钛矿太阳能电池的认证效率已经突破了25%,商业化应用前景十分可观。然而,钙钛矿电池较
截至2020年,光纤接入系统在全国的部署已经覆盖超过4亿个用户。随着网络业务的爆炸式发展,对接入网容量需求的不断提高。未来的无源光网络(Passive Optical Network,PON)系统将需要满足更高速率、更长传输距离、更多用户以及不同的场景需求。相干检测、偏振复用和数字信号处理技术使得相干PON成为满足未来光接入系统升级扩容的关键技术方案。本论文主要对面向未来的相干PON技术展开研究,