【摘 要】
:
透明聚酰亚胺,作为一类耐热型特种高分子材料,在柔性显示和生物医疗等领域具有极高的应用价值。现有的芳香型透明聚酰亚胺常采用共轭较大的联苯结构单元,获得较高的耐热性能,然而,存在较强的分子内/分子间电荷转移作用(CTC),使得可见光吸收和黄度指数(YI)偏高,同时造成分子取向度较大,双折射和相位延迟量过高,光学性能难以满足柔性显示应用需求。如何设计高刚性、低分子取向以及弱分子内/分子间CTC作用的透明
论文部分内容阅读
透明聚酰亚胺,作为一类耐热型特种高分子材料,在柔性显示和生物医疗等领域具有极高的应用价值。现有的芳香型透明聚酰亚胺常采用共轭较大的联苯结构单元,获得较高的耐热性能,然而,存在较强的分子内/分子间电荷转移作用(CTC),使得可见光吸收和黄度指数(YI)偏高,同时造成分子取向度较大,双折射和相位延迟量过高,光学性能难以满足柔性显示应用需求。如何设计高刚性、低分子取向以及弱分子内/分子间CTC作用的透明聚酰亚胺分子,是目前迫切需要解决的难题。鉴于此,本论文设计并合成了一类新型的刚性亚砜二胺单体,与芳香族二酐单体共聚,制备了无卤亚砜透明聚酰亚胺、含氟亚砜透明聚酰亚胺和大环亚砜聚酰亚胺,并进行了光学性质、热学性能、构效关系以及工程应用的系统研究。利用亚砜结构单元的刚性、大位阻和拉电子效应,在保障高耐热性能同时,有效提升了光学透过率,并降低了黄度指数、双折射和相位延迟,为高性能透明聚酰亚胺和大环聚酰亚胺的设计提供了新的思路。主要研究内容如下:(1)基于亚砜桥联基团,设计并合成了一系列高光学、热学性能及低介电特性的无卤型芳香族透明聚酰亚胺(PI),紫外截止波长λ0为360~386 nm,可见光波段透过率(T%)87.0~87.3%,黄度指数(YI)9.94~17.9;玻璃化转变温度(Tg)为293~352°C;介电常数2.05~2.41(1 MHz~1 GHz)和介电损耗0.001~0.01(1 MHz~1 GHz)。研究表明刚性扭曲的强拉电子基团亚砜单元有效限制了分子内/分子间的CTC作用,并诱导形成有序分子堆砌,进一步限制分子间的CTC作用,显著提高光学特性。(2)基于亚砜桥联基团,设计并合成了一系列含氟型亚砜透明PI,与现有的含氟透明PI进行对比,发现含氟亚砜PI具备更优异的光学性能和热性能。6FDA型亚砜透明PI的λ0为327 nm、T%为89%、YI值为3.1、相位延迟量(Rth)为84.5 nm;可溶的BPDA型亚砜透明PI的T%为88.5%、YI值为3.2,Tg为325°C、热膨胀系数(CTE)为24 ppm/K(50~300°C)。研究发现刚性扭曲的亚砜基团既能有效抑制抑制分子内和分子间CTC作用,又能有效降低分子摩尔折射率和光压系数,并显著改善其加工性能。(3)基于对含氟亚砜透明PI的性能提升研究,进一步将亚砜基团引入多元共聚体系,在工程化研究平台研究多元共聚型PAA溶液的粘度与二胺含量、固含量以及温度的关系,并制备一系列含氟亚砜透明PI膜,λ0为353~386 nm,T%为87.1~88.6%,YI值为3.1~5.6,Tg为335~355°C,CTE为9~30 ppm/K(50~300°C),显示出工程量产的应用前景。(4)设计并合成了一种大环型亚砜聚酰亚胺三聚体,其比表面积为122.4 m~2/g,孔径为0.8 nm/0.4 nm微孔结构,具有有序的分子堆砌结构,对四氢呋喃具有分子识别功能,属于新型分子牢笼超分子材料。
其他文献
目的:1、明确2型糖尿病和超重肥胖患者肠道菌群的变化特征及各自特有的肠道菌群。2、评估肠道菌群与2型糖尿病患者胰岛素敏感性及胰岛β细胞功能的相关性。方法:1、严格按照纳入与排除标准收集体重正常的健康人群(HC)、血糖正常的超重肥胖者(OWO)及2型糖尿病患者的一般临床资料,其中2型糖尿病患者进一步以BMI24kg/m2为界分为2型糖尿病超重肥胖组(OOD)和2型糖尿病非超重肥胖组(T2D)。基于O
适应和发展是人生的两大主题。大学生的社会适应不仅关系其大学阶段的学习、生活以及身心健康状况,同时也关系到他们步入社会后的职业适应和个人发展。在社会适应中,神经质人格是一种被广泛探讨的易感性因素。以往大量研究发现,高神经质人格是导致大学生社会适应不良的重要易感性因素。基于交互论,大学生社会适应是人格与环境交互作用的结果。那么,大学生神经质人格在不同环境中是如何发挥其易感性作用的呢?尽管以往研究取得了
研究目的肝细胞癌(HCC)是恶性程度极高的消化系统肿瘤,目前的治疗效果有限。虽然已有不少研究报道了长链非编码RNA(lncRNA)在肝癌中的具体作用,但相对于可编码蛋白的RNA,lncRNA的研究仍需进一步加强。因此,本研究旨在探索新的参与调控肝癌发生发展的lncRNA,并阐明其具体的调控方式,为肝癌的诊治提供新的分子标记物和治疗靶标,扩展治疗方向和策略,以期实现对肝癌的早期诊断与早期治疗,提高患
第一部分P2X7R/NLRP3信号通路在慢性鼻窦炎伴鼻息肉中的作用机制目的:探讨嘌呤2X7受体(P2X7R)及其介导的Nod样受体家族包含pyrin结构域蛋白3(NLRP3)炎症小体信号通路在慢性鼻窦炎伴鼻息肉中的作用机制。方法:收集32例慢性鼻窦炎伴鼻息肉标本作为实验组,16例正常中鼻甲标本为对照组,通过蛋白质免疫印迹(WB)、免疫荧光(IF)和实时荧光定量PCR(RT-PCR)检测了P2X7R
高产是油菜育种的首要目标。千粒重是油菜产量构成的重要因子之一,提高粒重对于培育油菜高产品种具有重要意义。本研究以甘蓝型油菜KN DH群体为材料,对种植在冬性、半冬性和春性环境的油菜千粒重性状进行QTL定位,并结合RNA-Seq技术对不同发育阶段种子进行BSR(BSA based on RNA sequence)和基因差异表达分析,以解析油菜粒重形成遗传机制,并获得共有关键候选基因。主要研究结果如下
随着对高能量密度电池的需求日益增加,发展高容量的电极材料迫在眉睫。合金化负极拥有数倍于目前商业化炭基负极的比容量,被认为是下一代高能量密度电池的候选材料之一。但是,合金化负极在充放电过程中的大体积变化会导致材料/电极结构的劣化与材料表面固体电解质界面膜(SEI)的持续破裂,使得电池容量发生快速的衰减。因此,构筑稳固的材料/电极结构以增强合金化负极的循环稳定性,并兼顾高倍率、高首次库伦效率等电化学性
科技的高速发展使人们对高比容量、高能量密度、低成本的清洁、可再生二次电池的需求与日俱增。锂硫电池因理论比容量高(1675 m Ah g-1)、能量密度高(2600 Wh kg-1)和价格低廉等优势,被认为是最有潜力的下一代能源存储设备。然而,多硫化锂的穿梭、活性物质硫的电绝缘、多硫化锂转化缓慢等问题影响了锂硫电池的稳定性和安全性。本学位论文围绕多孔有机聚合物(Porous organic poly
研究目的1.探究血浆VEGF-B水平与非酒精性脂肪性肝病(NAFLD)的关系。2.探究血浆VEGF-B水平与与血压,肾功能,糖脂代谢之间的关系。研究方法1.从武汉协和医院体检中心招募健康体检受试者及NAFLD受试者。NAFLD的判定主要根据肝脏超声结果,辅以其他检查结果及疾病史。2.收集受试者的体重指数(BMI),血压,肝肾功能,空腹血糖血脂,HbA1c,胰岛素抵抗指数(HOMA-IR)等,酶联免
癌症是严重威胁人类生命健康的恶性疾病,癌症相关的基础研究与转化医学研究已成为全世界广泛关注的焦点。以基因突变为标志物的基因检测方法可以实现癌症的早期诊断,但面临着基因突变丰度低、检测灵敏度低、设计复杂等困境;基于腺病毒的基因治疗方法在癌症治疗领域占有一席之地,可减少物理化学疗法带来的一系列副作用,但腺病毒在血液中存在易被清除且靶向性差的问题。因此,针对癌症基因检测和基因治疗中存在的问题开发新的方法
小G蛋白Ran对于RNA和蛋白质通过核孔复合体的转运至关重要。MOG1基因编码Ran蛋白的鸟嘌呤核苷酸释放因子,刺激Ran蛋白释放三磷酸鸟苷,调控RNA和蛋白质通过核孔复合体,进行核质转运。MOG1还能够直接和SCN5A基因编码的心脏钠离子通道蛋白Nav1.5结合,促进Nav1.5从内质网膜向细胞膜的输出,提高心脏钠电流密度。MOG1蛋白的进化保守性提示其可能具有重要作用,但是目前关于它在体内的生