【摘 要】
:
本文研究RN中有界开集Ω上的带有不定权且含有临界位势的非线性椭圆方程{-△u-μu/δ2(x)=a(x)up*-1+f(x,u),x∈Ω, u=0,x∈(a)Ω,(0-1)其中2≤p*<2N/(N-2),0≤μ≤(-μ)△=1/
论文部分内容阅读
本文研究RN中有界开集Ω上的带有不定权且含有临界位势的非线性椭圆方程{-△u-μu/δ2(x)=a(x)up*-1+f(x,u),x∈Ω, u=0,x∈(a)Ω,(0-1)其中2≤p*<2N/(N-2),0≤μ≤(-μ)△=1/4,f(x,u)是满足以下条件的函数:(H.1)f(x,u)∶(-Ω)×R→R连续.f(x.0)=0;(H.2)limu→0f(x,u)/u=k(x)∈L∞(Ω),|k(x)|∞<λ1;(H.3)limu→∞f(x,u)|u|p*-1=0,关于x一致.利用变分法及改进型的Harv不等式得到了以上问题的解的存在性.
其他文献
本文在半环上建立了半线性空间,定义了向量、线性无关及基等概念,讨论了n维向量半线性空间中的矩阵和基,并运用于一类模糊关系方程的求解.首先研究了矩阵可逆的充要条件,证明了矩
随着控制任务和结构的日益复杂化、系统各部件之间共享和交换信息的急剧膨胀,以及计算机、通信、传感器和网络技术的发展与广泛应用,一种新型的分布式、智能化、网络化的控制
有限群为群论中非常重要的部分,其结构与性质广泛应用于许多相关学科.但由于这类研究的抽象性,在解决问题时往往需要先对某些特殊的小阶群进行研究.而小阶群由于结构相对简单,易
组合设计中的大集问题有着悠久的历史,在实验设计、码论等方面有着非常重要的应用。由于它的难度,长期来的进展一直很慢。近三十多年来,在一些新方法和新手段的推动下,大集研究呈
自从20世纪六十年代开始,由于随机建模在自然科学和工程的诸多领域中得到了应用,随机系统开始受到了越来越多的重视,得到了许多关于随机系统的结论,也提出了许多随机系统不同
由于纽结在空间中是连续变化的,所以我们通过观察很难判断出两个纽结是否为同一个纽结,更难发现纽结间的内在关系,所以数学家们开始用代数知识来研究纽结,多项式也就成为了研究的
本文运用Nehari流形,集中紧性原理以及Ekeland变分原理等方法研究了两类在有界区域里带有临界指数的Kirchhoff方程. 首先,我们研究了四维空间内如下带有临界指数的Kirchhof