论文部分内容阅读
随着计算机技术与网络流媒体技术的不断发展,其与教育事业的结合催生了新一代智能录播系统。智能录播系统集录制、传输以及播放为一体,对于提高优质教育资源利用率以及缓解教育资源分配不均匀的问题具有重要意义。本文主要研究了智能录播系统中音视频实时流的传输问题。本文首先介绍了基于RTMP的实时流传输过程,重点介绍了 H.264与AAC的音视频编码技术、基于FLV格式的音视频封装技术、RTMP流媒体服务器的基本工作原理及其音视频转发技术。最后对当前RTMP协议普遍存在的网络延迟问题进行了深入分析,并确定了其关键问题所在。针对RTMP的网络延迟问题,本文创新性地提出了使用UDT进行数据发送的UDT_RTMP流媒体协议,并自定义了基于UDT_RTMP协议的音视频数据封装格式,与此同时对RTMP服务器的接收端进行了重定义,使之能够充分发挥UDT-RTMP的传输性能。为了验证UDT_RTMP数据传输的可靠性,本文对其进行了丢帧统计,统计结果表明UDT_RTMP数据传输比较可靠,最大丢帧率不超过0.67%,平均丢帧率为0.272%;为了验证其实时性能,将UDT_RTMP与RTMP进行了对比实验,实验结果表明,UDT_RTMP将原来2000ms左右的网络延迟减少到了 800ms左右。为保证UDT_RTMP的数据传输质量,本文提出了 一系列网络优化策略。由于RTT可以表征当前网络拥塞状况,并且其短期内的变化趋势可以被预测,本文创新性地提出了基于bp神经网络的RTT趋势预测以及视频发送端的动态调整策略,通过RTT趋势预测并结合相应的RTT判定依据,可以提前至少100-200ms预知网络拥塞状况,并实时动态调整视频发送;为了尽量避免由于视频丢帧造成的画面模糊,本文提出了基于UDT重传特性的H.264视频丢帧策略;为了改善视频的流畅性能,本文提出了基于环形缓冲区的发送端动态调整策略。最后本文搭建了以Hi3531A为核心的智能录播系统,并将该系统成功应用于某校的元旦文艺晚会现场直播录制。与此同时,在该实验平台上对UDT_RTMP的实时性与流畅性进行了充分的实验分析,实验结果表明,UDT_RTMP可以很好地改善RTMP的延迟问题,并实现流媒体的流畅传输。