基于微纳结构的光吸收体及结构色器件的研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:cocksun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着纳米光子学的不断发展,人类得以在微纳米尺度调控光与物质的相互作用,使得入射到物体表面的光波实现特殊的反射、透射、吸收、散射等特性。二元光学、光子晶体、超材料、拓扑材料等各式新颖的结构大大丰富了调控手段,催生了一大批新颖的光学功能器件。包括宽带吸收器件、结构色器件、光学隐身器件、光学异常折射器件等在内的众多器件,使得人们可以用前所未有的方式对光波在内的电磁波进行任意调控。本文中,我们研究了利用微结构对光波进行调控,主要包括宽带吸收材料及其辐射散热性质、单片集成的结构色器件以及动态可调的透射式结构色器件三个方面。首先,基于碳基材料,我们提出了一种制备宽带吸收材料的新工艺——自掩膜刻蚀效应。利用该效应,我们在普通的压缩石墨板上制备了直径百纳米的纳米针结构。控制刻蚀工艺,我们可以控制纳米针结构的高度,进而控制器件的吸收特性。实验结果表明,该器件在400 nm-10 μm波段都可以实现大于99%的吸收率。同样的,我们在柔性石墨膜上也制备了纳米针结构,该器件在400 nm-15 μm可以实现99%的吸收率。同时,实验测得该器件的导热率高达630 Wm-1K-1。我们还测试了该器件的辐射散热效果,实验结果表明,与普通的石墨膜相比,具有纳米结构的宽带吸收石墨膜具有更好的散热特性。该吸收器件在80℃左右时降温效果比原始薄膜高3.7℃左右。其次,我们提出了一种新型的结构色器件。利用阶梯式结构,我们可以在晶圆尺度实现彩色结构色滤光片的单片集成。该结构由非对称的FP腔构成,顶部为高损耗金属、中间介质由SU8聚合物构成、底部为厚的银膜。仿真结果表明,与常用金属相比,引入高损耗金属,该器件可以实现更窄带的反射谱,进而得到更纯的结构色。通过控制紫外曝光工艺,我们可以调控介质层聚合物的厚度,进而在单个芯片上得到不同厚度、不同颜色的结构色滤光器件。另外,我们在柔性基底上也制备了各色滤光片,从而拓宽了该结构的应用范围。接下来,结合液晶材料的特性,我们提出了一种动态可调的透射式结构色显示器件。该器件为改进的光栅型FP腔结构,顶部为金属光栅,底部为金属薄膜,其对入射光的偏振非常敏感。通过加电调控液晶的指向失分布,我们可以方便的调控入射到FP腔的光的偏振状态,进而可以控制颜色变化。仿真结果表明,该器件的透射峰强度可以达到70%,且峰值波长变化范围高达300 nm左右,为同类型器件的最大值。并且通过控制介质层厚度、光栅周期等结构参数,该结构的颜色响应可以覆盖整个可见光范围。最后,我们总结了全文的主要工作,并对宽带吸收器件、结构色器件等相关工作提出了展望。
其他文献
涡旋光束拥有螺旋型的相位结构。研究表明涡旋光束存在相位奇点,光束中的光子携带轨道角动量,这类光束在经典和量子领域具有重要作用,其在自由空间光通信、量子信息处理、光学微操控、光学测量、超分辨成像等领域引起了科研工作者的持续关注。这使得涡旋光束的研究成为了现代光学中的一个重要研究领域。传统的涡旋光束包括拉盖尔高斯光束、贝塞尔光束、高斯涡旋光束等。近年来一些新型涡旋光束也被越来越多的研究人员所关注,包括
量子自旋系统在凝聚态物理学中占据重要的地位,为研究量子多体物理提供了很好的平台。本论文研究若干量子自旋系统的基态和低能激发,讨论了量子自旋系统中的阻挫磁性、投影构造、严格解、张量网络态、隐含的对称性等等问题。本文的第一部分研究了三维hyperkagome晶格上的J1-J2-J3反铁磁海森堡模型的阻挫磁性。在经典极限下,我们提出了“hyperkagome三角形规则”和“孤立三角形规则”,并应用这两个
近年来,以全球变暖为主的气候变化对地球系统产生了深远的影响,其中水文循环是受影响最直接和最重要的环节之一。随着全球平均气温的升高,大气中可容纳的水汽含量增加,水文循环过程加速,导致降雨的频率和强度增加,进而引起极端水文事件频发,对人类生命财产安全和社会经济发展构成了严重威胁。研究气候变化对水文循环的影响,对水资源管理者与决策者在变化环境下进行有效的水资源规划与管理、水利工程设计和极端灾害事件预防等
计算机断层成像(Computerized Tomography,CT)技术作为一种无损的检测技术,能够利用不同角度下采集到的待测物体的X光投影数据重建出反映物体结构信息的二维或三维图像。CT技术因为具有无损、高时空分辨率和三维可视化等优点,已被广泛地应用于医疗诊断、工业检测和安全检查等诸多领域。在实际应用中,由于对X光剂量的考虑,以及扫描环境或待检测对象的影响,会得到不完全的投影数据,即投影数据不
欧洲核子中心(CERN)大型强子对撞机(LHC)上已经积累了大量的实验数据。然而通过对这些数据的分析仍然没有发现新物理存在的迹象。因此精确检验标准模型,寻找与实验数据的微小偏差变得愈发重要。强相互作用在LHC上无处不在,描述强相互作用最为成功的理论是量子色动力学(QCD),可见QCD在LHC中扮演着不可或缺的角色。关于LHC物理,标准模型的精度在一定程度上取决于QCD的精度。提高QCD的理论预言精
制造业企业中,成本控制直接影响企业战略目标达成,对企业在市场中的竞争地位起着重要的作用。本文主要阐述了目标成本管理的在制造业应用过程中的重要性,通过分析目标成本管理存在的问题点,深入研究目标成本管理在制造业成本控制的方法及建议,以期进一步提高目标成本管理的应用宽度,实现目标成本管理进入设计阶段管控来实现企业的成本管理前移,提高企业的市场竞争力及管理运营水平。
涡旋光束具有螺旋的相位结构,并且携带轨道角动量,因此涡旋光束的传播以及应用一直是结构光场的重要方向。随着近几年人们对光场调控手段的丰富,一些特殊结构的涡旋光束被相继提出。基于这个研究背景,本论文中利用光的传播衍射理论并结合实验手段研究了分数涡旋光束、多匝道分数涡旋光束以及涡旋对光束的传播特性以及在光学捕获中的应用。本文具体章节安排如下:第一章介绍了涡旋光束的研究背景和意义,并分别介绍了整数涡旋光束
量子相变是本世纪凝聚态物理领域一个重要的科学问题以及研究热点。发生在零温的量子相变,可以对有限温度甚至是室温以上的物性造成影响。对不同量子相变现象的研究,可以为量子相变的普适性提供重要的参考构架。通过压力调控,本博士论文探索了铁磁材料CeRh6Ge4,反铁磁材料CePdIn以及电荷密度波材料LaPt2Si2等材料中可能出现的量子相变及相关物性。1.反铁磁量子临界点可以在诸多强关联体系中被发现。在某
硅基光互连在未来大数据和超级计算时代扮演着重要的角色,主要解决短距离光通信带宽、成本、功耗等问题,得益于硅光的高集成度、CMOS工艺兼容、易于与其他材料平台混合集成等优点。其中提高光互连通信容量技术中应用较多的是波分复用技术,而片上模式复用或偏振复用产业利用尚未成熟,需要进一步探索提高硅光器件的性能,特别在模式复用、偏振控制、光场传输控制上。本文在硅基平台上对波导系统模场的调控进行研究,包括对对称
面对日益增长的通信速度和通信容量要求,拓宽通信波段至中红外波段有望有效解决通信带宽受限的问题。在2μm中红外通信系统中,全光信号处理仍将对系统的运行起到至关重要的作用。硅基波导集成度高、工艺成熟,而且在中红外波段也表现出了良好的非线性性能。本论文针对2μm中红外波段,结合聚合物、金属等多种材料,设计并制作高品质因数大转换带宽的硅基波导,并通过波导中的四波混频效应实现了中红外波段的波长转换。对于复合