关于位势依赖于能量的薛定谔方程的特征展开问题

来源 :郑州大学 | 被引量 : 0次 | 上传用户:jiangxiuli2010
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文用复变函数法研究了位势依赖于能量的Schr(o)dinger方程在Sturm-Liouville边界条件下的特征展开问题.首先讨论了特征值的秩以及相应整函数的零点重数,其次利用构造出的Green函数给出相应非齐次问题的预解式,最后借助回路积分法与渐近估计得到了£2[0,1]中的特征展开定理.  
其他文献
微分算子的谱理论在研究数学,物理,包括天体力学,量子力学,航天科学以及生物工程,流体的稳定性等许多科学领域起着重要的作用.许多数学模型都是应用的哈密顿算子的形式,因此线性哈密
著名的费尔巴哈定理断言三角形的九点圆与内切圆相内切,而与旁切圆相外切,这四个切点都称为该三角形的费尔巴哈点.   本文利用射影几何方法确定三角形的费尔巴哈点的重心坐
本文研究了一类带有参数的非线性随机系统的无源性、反馈等价和全局适应输出反馈镇定,也探讨了非线性随机适应无源系统和它的零输出系统之间的关系。不同于确定性的情况,文中
数学物理中很多问题都可以归结为求微分算子的特征值和特征函数,以及将函数按特征函数系展开的问题,例如,用Fourier方法求偏微分方程的初边条件的解等。因此,微分算子一直吸引了
近年来随着科学技术,特别是信息技术的发展,全局优化问题的应用也越来越广泛,比如图像处理、化学工程设计和控制、经济计划、数据库和芯片设计、分子生物学、网络工程、国防、网
本文主要研究两类非凸规划问题:带多乘积约束的非凸二次规划和广义几何规划.实际生活中,这两类规划问题被广泛使用在经济、运输、管理等科学领域.但是由于这些问题存在多个局部