【摘 要】
:
氨资源对于粮食生产和现代工业社会发展至关重要,且对能源可持续发展具有重大意义。目前工业合成氨技术条件苛刻,耗能高,且易造成环境污染。寻找绿色、高效的制氨方法变得尤为迫切。电催化氮还原利用氮气和水在环境条件下合成氨,具有极大的应用潜力。催化剂的选择和设计是决定电催化氮还原效率的关键。单原子催化通过将单原子引入纳米材料,对催化载体配位环境、几何结构和电子结构进行调控,从而增强其稳定性和催化活性。本文通
论文部分内容阅读
氨资源对于粮食生产和现代工业社会发展至关重要,且对能源可持续发展具有重大意义。目前工业合成氨技术条件苛刻,耗能高,且易造成环境污染。寻找绿色、高效的制氨方法变得尤为迫切。电催化氮还原利用氮气和水在环境条件下合成氨,具有极大的应用潜力。催化剂的选择和设计是决定电催化氮还原效率的关键。单原子催化通过将单原子引入纳米材料,对催化载体配位环境、几何结构和电子结构进行调控,从而增强其稳定性和催化活性。本文通过第一性原理计算,对过渡金属单原子修饰MoSe2和石墨烯电催化剂性能进行研究,通过几何结构、电子结构和电荷转移等研究其催化反应机理,筛选出稳定高效的固氮单原子催化剂材料。主要开展了如下工作:(1)利用过渡金属单原子修饰Se空位缺陷的MoSe2得到TM/MoSe2(TM=V,Cr,Nb,Mo,Ta和W)氮还原催化剂。通过对催化剂表面的氮气吸附能和吉布斯自由能筛选,确定了end-on吸附构型更容易激活惰性的氮气分子,发现W/MoSe2催化剂表现出最优的催化性能,在远端路径下决速步能垒为0.21 e V。通过计算对比分析TM/MoSe2与氮气吸附物之间的局域态密度发现,活性位W原子的d轨道与N2的p轨道在费米能级附近发生明显轨道重叠,增强了两者之间的成键强度。且TM/MoSe2的限制电位与其相对应的氮气吸附能存在一定线性关系,即限制电位随氮气吸附能的增强而降低。这一研究可为单原子修饰MoSe2电催化剂的设计提供指导。(2)利用第一性原理计算研究了钒原子与氮原子共掺石墨烯(VN3@G)和钒原子与氮、氧原子共掺石墨烯(VN2O@G)作为氮还原催化剂的性能。根据VN3@G和VN2O@G计算优化后的结构,发现钒原子突出于石墨烯平面,且自旋磁矩主要集中钒原子上,为反应提供活性位点。此外,VN2O@G的磁矩为2.56μB,自旋磁矩密度略高于VN3@G的2.42μB,高的自旋密度有利于氮气的吸附。通过对比分析了VN3@G和VN2O@G的结合能、氮气吸附能、反应中吉布斯自由能等,结果表明VN2O@G表现出更好的催化性能,过电位为-0.41 V。因此,可通过石墨烯上掺杂电负性强的杂原子来调控反应能垒,为设计高效的催化剂提供可能性。
其他文献
电磁诱导透明(Electromagnetically Induced Transparency,EIT)是三能级原子系统中量子相消干涉的结果,在透明窗口内,吸收和色散特性都发生了剧烈变化,这在慢光、光学存储和其他非线性光学过程中具备潜在的应用。在各种模型系统(光子晶体波导、光机械系统、耦合光学微腔和超材料等)中,通过设计相干激发路径,能产生类EIT效应,但是基于一维光子晶体纳米梁腔的类EIT效应在
随着物联网技术和可穿戴电子设备的快速发展,传统的电池能源供电已经暴露出许多缺点,例如使用寿命有限和废弃电池对环境的污染,此外,这些新型应用对能源的便携性、可穿戴性和柔性要求也越来越高。最近,具有输出功率高、制备简单、成本低等优点的摩擦纳米发电机,成为了近几年来相关领域的热点。由于具有良好的拉伸性和柔韧性且适用于人体穿戴,聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)被选取为框
近年来,为了保护人类健康和安全,迫切需要对室外空气环境中痕量二氧化氮(NO2)进行高灵敏度和高选择性的检测。异质结的构筑与光激发手段的有效结合是实现室温环境下高性能气体传感器的有效途径。然而,光激发对异质结构材料气敏性能的影响机制尚不清楚。本文以MoS2为研究对象,探索了异质结的构筑对MoS2气敏性能的影响。在此基础上,采用光辅助气体检测模式进一步改善异质结构复合材料气体传感器在室温环境下的气敏性
随着对有机无机杂化钙钛矿(Organic-inorganic hybrid halogen perovskite,OIHP)材料的系统研究,钙钛矿太阳能电池(PSCs)的光电转换效率取得飞速进展,已可以与硅太阳能电池相媲美,然而在面临实际应用的道路上却遇到环境稳定性差的问题。OIHP材料本身对水氧的敏感性,成为商业化的拦路虎。通过优化OIHP材料本身的性质及界面层材料的调控来提高水氧稳定性,是提升
物联网的高速发展对具有高灵敏度、高集成度、跨环境兼容性的小型化传感器的需求日益迫切。随着众多新兴纳米材料的出现,多种材料、不同工艺在传感领域得到了广泛应用。其中,碳纳米管以其超高的比表面积、超薄的体积、低的噪声、优异的稳定性等优势在传感领域展现出巨大潜力,成为气体传感领域最有前景的材料之一。尽管如此,构建基于碳纳米管薄膜的超灵敏亚ppm量级检测下限的气体传感器仍极具挑战性。其中,氢气作为一种新型清
通过范德瓦尔斯(van-der-Walls,缩写vd W)相互作用集成不同维度的材料形成异质结是设计材料新方法。目前关于异质结的设计大多集中在二维与二维材料之间,而不同维度材料之间的vd W集成的异质结还有待深入研究。由于集成了不同维度的限域效应,由它们形成的异质结往往能表现出优异的光电性能。本文在范德瓦尔斯相互作用基础上,考虑了一维碳纳米管(CNT)与二维硒化锗(GeSe)构成的一维(1D)/二
W UMa型相接双星因其与众不同的哑铃结构、掩食概率高、便于观测、掩食数据易获得等优越性,得到了广泛天文研究者的关注。随着光电测光、CCD测光等技术的日益精进,目前已经获得了相当数量的观测数据,这些数据资料让W UMa型相接双星结构、演化等研究得到了快速发展。本文在这些基础上,对两颗W UMa型相接双星LO And、V0339 Com进行了测光与轨道周期研究,研究结果如下:1.利用Wilson-D
近年来由于社会快速发展导致人们对能源的需求逐渐提高,仅依赖于昂贵的锂离子电池已变得越来越不切实际和不经济。而具有成本低廉、能量密度高、循环稳定性好和快速充/放电功能等优势的钾离子电池在近年来受到了广泛的关注。然而该项研究仍处于发展阶段,还存在一些技术上和工程上的问题:在充/放电过程中频繁嵌入和脱嵌半径较大的钾离子容易破坏通常使用的锂离子电池和钠离子电池电极材料,从而导致电池容量低、倍率性能下降、循
路径规划是机器人导航的关键技术,本文选取蘑菇繁殖算法(Mushroom reproduction optimizaion,MRO)进行路径规划,针对蘑菇繁殖算法存在的容易陷入局部最优、收敛精度低等问题,本文对蘑菇繁殖算法进行优化,并从多个测试函数上进行测试,验证改进算法的性能;利用蘑菇繁殖算法解决机器人路径规划问题,通过调研传统蘑菇繁殖算法和的思想和原理,以及各种群智能算法在机器人路径规划上的应用
具备着优异的结晶度、较高的表面积和体积比的二维材料常被用来制备光电探测器,制备的光电探测器具有较高的响应度和光电导率增益。最近,一种新型的二维半导体材料Bi2O2Se由于具有超高的电子迁移率特性、合适的带隙宽度、良好的环境稳定性和自调制掺杂效应等特点,它被应用在光电探测器、场效应晶体管、超级电容器等领域,并且显示出优异的性能。光电探测器是一种将光信号转换为电信号的电子设备,在火灾监测、工业控制、医