水蜜桃果酒的工艺研究

来源 :淮阴工学院 | 被引量 : 3次 | 上传用户:zqfr3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
水蜜桃(Prunus persica L.)汁多味美、营养丰富,在我国产量巨大,但水蜜桃是呼吸跃变式果实,储藏期短,易腐烂变质。面对桃产能过剩,大量水蜜桃腐烂被丢弃,导致桃农经济受损,环境受到污染的问题,本文对水蜜桃进行深加工——酿制水蜜桃果酒。由于国内外对水蜜桃果酒的研究极少,生产技术、发酵工艺不够成熟,经土法酿制后发现存在以下问题:(1)缺乏水蜜桃果酒最适酿酒酵母的研究;(2)水蜜桃果胶含量较高、出汁率低;(3)水蜜桃果酒乙酸、苹果酸含量高,导致其口感酸涩,酒体不协调。针对这些问题,本课题对水蜜桃果酒的生产工艺进行系统研究以改善品质,同时对酿制的水蜜桃果酒进行香气成分分析,探究使其产生独特风味的挥发性成分。(1)选取本实验室从桃皮中分离纯化获得的F206酿酒酵母与市面上的5株商业酿酒酵母(AWRI、BV818、DV10、RV171、F5),通过耐受性、发酵力以及发酵试验等方面的研究,对比6株酿酒酵母酿制的水蜜桃果酒的基础指标以及感官评定的得分,选择F206酵母为最适的水蜜桃果酒酿酒酵母。(2)针对水蜜桃果胶含量较高的问题,对水蜜桃浆汁进行酶解并对酶解条件进行正交试验。得到了Rapidase C80 Max果胶酶的最适酶解条件:酶解时间为1.5 h,酶解温度为50℃,酶添加量为总质量的0.0020%。在此条件下,水蜜桃浆的出汁率为54.83%,比未添加果胶酶时提高了11.3%。为提高水蜜桃果酒的澄清度,在发酵结束后加入0.0015%的Rapidase C80 Max果胶酶进行酶解澄清,使得水蜜桃果酒的透光率为97.4%,比未添加果胶酶时提高了19.2%。(3)针对水蜜桃果酒乙酸含量较高的问题,进行了发酵工艺响应面优化,得到了控制乙酸的最佳发酵工艺参数:起始糖量为180 g/L,SO2添加量为72 mg/L,发酵温度为21℃。在此条件下乙酸的含量为0.499 g/L,与优化前的水蜜桃果酒相比,乙酸含量降低了64.73%。(4)针对水蜜桃果酒苹果酸含量较高的问题,通过在发酵后期接入乳酸菌进行苹果酸-乳酸转化(苹乳转化)的方法,降低了水蜜桃果酒中苹果酸的含量。通过单因素试验得到了苹乳转化的最佳发酵工艺参数:乳酸菌接种量为10 mg/L,发酵温度为18℃,发酵时间为20 d。在此条件下苹果酸含量为1.024 g/L,乳酸含量3.976 g/L,与优化前的水蜜桃果酒相比,苹果酸含量降低了78.90%。(5)通过顶空固相微萃取技术和气相色谱-质谱法对水蜜桃果酒进行香气成分分析,共得到69种挥发性成分,主要的香气成分为乙酸乙酯、乳酸乙酯、乙酸异戊酯、己酸乙酯、辛酸乙酯、癸酸乙酯、苯甲酸乙酯、苄醇、苯乙醇、壬醛、十八醛。
其他文献
通过对口腔医学五年制毕业生毕业考试模式改革(实行模拟口腔执业医师技能考试方式)。探讨目前在口腔医学教学中存在的问题,为口腔医学教学改革提供资料。
在进行混凝土施工之前经常会遇到含泥量过高的问题,对混凝土的强度会产生一定的影响,要想将相关问题解决,就要明确的掌握含泥量对其影响主要体现在哪些方面,本文对相关内容进行了
驾驶员在消极情绪状态下的驾驶行为是造成交通事故的重要原因之一,特别是由消极情绪所引发的“路怒症”(Road Rage)现象,严重影响了驾驶员的安全驾驶。因此研究驾驶员情绪识
化学是一门以实验为基础的自然科学,实验教学在化学课中占有举足轻重的地位。九年义务教育初中化学教材中涉及水的实验很多,水在其中扮演着非常重要的角色。通过多年的教学实践